A universal inequality for CFT and quantum gravity

被引:0
|
作者
Simeon Hellerman
机构
[1] The University of Tokyo,Institute for the Physics and Mathematics of the Universe
关键词
Models of Quantum Gravity; Conformal and W Symmetry; Conformal Field Models in String Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every unitary two-dimensional conformal field theory (with no extended chiral algebra, and with c, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \tilde{c} > 1 $\end{document}) contains a primary operator with dimension ∆1 that satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 0 < {\Delta_1} < \frac{{c + \tilde{c}}}{{12}} + 0.473695 $\end{document}. Translated into gravitational language using the AdS3/CFT2 dictionary, our result proves rigorously that the lightest massive excitation in any theory of 3D matter and gravity with cosmological constant Λ < 0 can be no heavier than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{1} \left/ {{\left( {4{G_N}} \right)}} \right.} + o\left( {\sqrt {{ - \Lambda }} } \right) $\end{document}. In the flat-space approximation, this limiting mass is twice that of the lightest BTZ black hole. The derivation applies at finite central charge for the boundary CFT, and does not rely on an asymptotic expansion at large central charge. Neither does our proof rely on any special property of the CFT such as supersymmetry or holomorphic factorization, nor on any bulk interpretation in terms of string theory or semiclassical gravity. Our only assumptions are unitarity and modular invariance of the dual CFT. Our proof demonstrates for the first time that there exists a universal center-of-mass energy beyond which a theory of ”pure” quantum gravity can never consistently be extended.
引用
收藏
相关论文
共 50 条
  • [31] On CFT and quantum chaos
    Turiaci, Gustavo J.
    Verlinde, Herman
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (12):
  • [32] On the new massive gravity and AdS/CFT
    Sinha, Aninda
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06):
  • [33] The CFT dual of AdS gravity with torsion
    Klemm, Dietmar
    Tagliabue, Giovanni
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (03)
  • [34] CFT/gravity correspondence on the isolated horizon
    Ghosh, Amit
    Pranzetti, Daniele
    NUCLEAR PHYSICS B, 2014, 889 : 1 - 24
  • [35] BRST invariant higher derivative operators in 4D quantum gravity based on CFT
    Hamada, Ken-ji
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [36] Universal Gravity
    Allen, Treb
    Arkolakis, Costas
    Takahashi, Yuta
    JOURNAL OF POLITICAL ECONOMY, 2020, 128 (02) : 393 - 433
  • [37] CFT hydrodynamics: symmetries, exact solutions and gravity
    Fouxon, Itzhak
    Oz, Yaron
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (03):
  • [38] A universal feature of CFT Rényi entropy
    Eric Perlmutter
    Journal of High Energy Physics, 2014
  • [39] CFT ESTIMATES OF THE UNIVERSAL BINDER PARAMETER FOR QUANTUM GROUND-STATE TRANSITIONS IN ONE-DIMENSION
    HATANO, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (08): : L223 - L230
  • [40] Universal blocks of the AdS/CFT scattering matrix
    Arutyunov, G.
    de Leeuw, M.
    Torrielli, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05):