A universal inequality for CFT and quantum gravity

被引:0
|
作者
Simeon Hellerman
机构
[1] The University of Tokyo,Institute for the Physics and Mathematics of the Universe
来源
Journal of High Energy Physics | / 2011卷
关键词
Models of Quantum Gravity; Conformal and W Symmetry; Conformal Field Models in String Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every unitary two-dimensional conformal field theory (with no extended chiral algebra, and with c, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \tilde{c} > 1 $\end{document}) contains a primary operator with dimension ∆1 that satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 0 < {\Delta_1} < \frac{{c + \tilde{c}}}{{12}} + 0.473695 $\end{document}. Translated into gravitational language using the AdS3/CFT2 dictionary, our result proves rigorously that the lightest massive excitation in any theory of 3D matter and gravity with cosmological constant Λ < 0 can be no heavier than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{1} \left/ {{\left( {4{G_N}} \right)}} \right.} + o\left( {\sqrt {{ - \Lambda }} } \right) $\end{document}. In the flat-space approximation, this limiting mass is twice that of the lightest BTZ black hole. The derivation applies at finite central charge for the boundary CFT, and does not rely on an asymptotic expansion at large central charge. Neither does our proof rely on any special property of the CFT such as supersymmetry or holomorphic factorization, nor on any bulk interpretation in terms of string theory or semiclassical gravity. Our only assumptions are unitarity and modular invariance of the dual CFT. Our proof demonstrates for the first time that there exists a universal center-of-mass energy beyond which a theory of ”pure” quantum gravity can never consistently be extended.
引用
收藏
相关论文
共 50 条
  • [21] On-shell techniques and universal results in quantum gravity
    N. E. J. Bjerrum-Bohr
    John F. Donoghue
    Pierre Vanhove
    Journal of High Energy Physics, 2014
  • [22] On-shell techniques and universal results in quantum gravity
    Bjerrum-Bohr, N. E. J.
    Donoghue, John F.
    Vanhove, Pierre
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (02):
  • [23] A Monte-Carlo study of the AdS/CFT correspondence : an exploration of quantum gravity effects
    Berenstein, David
    Cotta, Randel
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [24] Penrose Inequality as a Constraint on the Low Energy Limit of Quantum Gravity
    Folkestad, Asmund
    PHYSICAL REVIEW LETTERS, 2023, 130 (12)
  • [25] Quantum sensing from gravity as a universal dephasing channel for qubits
    Balatsky, Alexander, V
    Roushan, Pedram
    Schaltegger, Joris
    Wong, Patrick J.
    PHYSICAL REVIEW A, 2025, 111 (01)
  • [26] Universal bounds on CFT Distance Conjecture
    Ooguri, Hirosi
    Wang, Yifan
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (12):
  • [27] On the new massive gravity and AdS/CFT
    Aninda Sinha
    Journal of High Energy Physics, 2010
  • [28] On CFT and quantum chaos
    Gustavo J. Turiaci
    Herman Verlinde
    Journal of High Energy Physics, 2016
  • [29] A universal feature of CFT Renyi entropy
    Perlmutter, Eric
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03):
  • [30] Is inequality universal?
    Salzman, PC
    CURRENT ANTHROPOLOGY, 1999, 40 (01) : 31 - 61