A universal inequality for CFT and quantum gravity

被引:0
|
作者
Simeon Hellerman
机构
[1] The University of Tokyo,Institute for the Physics and Mathematics of the Universe
关键词
Models of Quantum Gravity; Conformal and W Symmetry; Conformal Field Models in String Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every unitary two-dimensional conformal field theory (with no extended chiral algebra, and with c, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \tilde{c} > 1 $\end{document}) contains a primary operator with dimension ∆1 that satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ 0 < {\Delta_1} < \frac{{c + \tilde{c}}}{{12}} + 0.473695 $\end{document}. Translated into gravitational language using the AdS3/CFT2 dictionary, our result proves rigorously that the lightest massive excitation in any theory of 3D matter and gravity with cosmological constant Λ < 0 can be no heavier than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{1} \left/ {{\left( {4{G_N}} \right)}} \right.} + o\left( {\sqrt {{ - \Lambda }} } \right) $\end{document}. In the flat-space approximation, this limiting mass is twice that of the lightest BTZ black hole. The derivation applies at finite central charge for the boundary CFT, and does not rely on an asymptotic expansion at large central charge. Neither does our proof rely on any special property of the CFT such as supersymmetry or holomorphic factorization, nor on any bulk interpretation in terms of string theory or semiclassical gravity. Our only assumptions are unitarity and modular invariance of the dual CFT. Our proof demonstrates for the first time that there exists a universal center-of-mass energy beyond which a theory of ”pure” quantum gravity can never consistently be extended.
引用
收藏
相关论文
共 50 条
  • [1] A universal inequality for CFT and quantum gravity
    Hellerman, Simeon
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (08):
  • [2] Higher Spin AdS/CFT Correspondence and Quantum Gravity Aspects of AdS/CFT
    Ammon, Martin
    1ST KARL SCHWARZSCHILD MEETING ON GRAVITATIONAL PHYSICS, 2016, 170 : 135 - 143
  • [3] Conformal bootstrap in dS/CFT and topological quantum gravity
    Addazi, Andrea
    Marciano, Antonino
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (01)
  • [4] Quantum probes for universal gravity corrections
    Candeloro, Alessandro
    Boschi, Cristian Degli Esposti
    Paris, Matteo G. A.
    PHYSICAL REVIEW D, 2020, 102 (05):
  • [5] Flat-space quantum gravity in the AdS/CFT correspondence
    Nomura, Yasunori
    Sanches, Fabio
    Weinberg, Sean J.
    PHYSICAL REVIEW D, 2016, 93 (06)
  • [6] A note on the AdS/CFT correspondence and the nature of spacetime in quantum gravity
    Silva, Carlos
    NUCLEAR PHYSICS B, 2024, 998
  • [7] The shadows of quantum gravity on Bell's inequality
    Moradpour, H.
    Jalalzadeh, S.
    Tebyanian, H.
    MODERN PHYSICS LETTERS A, 2025, 40 (07N08)
  • [8] Vertex Operators in 4D Quantum Gravity Formulated as CFT
    Ken-ji Hamada
    Foundations of Physics, 2011, 41 : 863 - 882
  • [9] Vertex Operators in 4D Quantum Gravity Formulated as CFT
    Hamada, Ken-ji
    FOUNDATIONS OF PHYSICS, 2011, 41 (05) : 863 - 882
  • [10] Universal Pattern in Quantum Gravity at Infinite Distance
    Castellano, Alberto
    Ruiz, Ignacio
    Valenzuela, Irene
    PHYSICAL REVIEW LETTERS, 2024, 132 (18)