Secondary Quantum Hamiltonian Reductions

被引:0
|
作者
Jens Ole Madsen
Eric Ragoucy
机构
[1] Laboratoire de Physique Théorique ENSLAPP,
[2] groupe d'Annecy,undefined
[3] LAPP,undefined
[4] Chemin de Bellevue,undefined
[5] B.P. 110,undefined
[6] F-74941 Annecy-le-vieux Cedex,undefined
[7] France. E-mail: madsen@lapphp8.in2p3.fr,undefined
[8] ragoucy@lapp.in2p3.fr,undefined
来源
关键词
Hamiltonian Reduction; Secondary Quantum; Quantum Hamiltonian Reduction;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, it has been shown how to perform the quantum hamiltonian reduction in the case of general \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} embeddings into Lie (super)algebras, and in the case of general \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} embeddings into Lie superalgebras. In another development it has been shown that when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are both subalgebras of a Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, then classically the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} algebra can be obtained by performing a secondary hamiltonian reduction on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. In this paper we show that the corresponding statement is true also for quantum hamiltonian reduction when the simple roots of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} can be chosen as a subset of the simple roots of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. As an application, we show that the quantum secondary reductions provide a natural framework to study and explain the linearization of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} algebras, as well as a great number of new realizations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} algebras.
引用
收藏
页码:509 / 541
页数:32
相关论文
共 50 条
  • [41] Experimental quantum Hamiltonian learning
    Wang, Jianwei
    Paesani, Stefano
    Santagati, Raffaele
    Knauer, Sebastian
    Gentile, Antonio A.
    Wiebe, Nathan
    Petruzzella, Maurangelo
    O'Brien, Jeremy L.
    Rarity, John G.
    Laing, Anthony
    Thompson, Mark G.
    NATURE PHYSICS, 2017, 13 (06) : 551 - 555
  • [42] Asymptotic of quantum Hamiltonian spectrum
    Vedenyapin, VV
    Orlov, YN
    DOKLADY AKADEMII NAUK, 1996, 351 (04) : 444 - 447
  • [43] Classical and quantum Hamiltonian ratchets
    Schanz, H
    Otto, MF
    Ketzmerick, R
    Dittrich, T
    PHYSICAL REVIEW LETTERS, 2001, 87 (07) : 70601 - 1
  • [44] INTERACTION HAMILTONIAN OF QUANTUM OPTICS
    ACKERHALT, JR
    MILONNI, PW
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1984, 1 (01) : 116 - 120
  • [45] A quantum hamiltonian simulation benchmark
    Yulong Dong
    K. Birgitta Whaley
    Lin Lin
    npj Quantum Information, 8
  • [46] COLLISIONS FOR THE QUANTUM COULOMB HAMILTONIAN
    GERARD, C
    KNAUF, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) : 17 - 26
  • [47] QUANTUM SOLITONS IN A HAMILTONIAN FRAMEWORK
    PARMENTOLA, JA
    YANG, XH
    ZAHED, I
    ANNALS OF PHYSICS, 1991, 209 (01) : 124 - 141
  • [48] Quantum Hamiltonian for gravitational collapse
    Husain, Viqar
    Winkler, Oliver
    PHYSICAL REVIEW D, 2006, 73 (12):
  • [49] Experimental quantum Hamiltonian learning
    Wang J.
    Paesani S.
    Santagati R.
    Knauer S.
    Gentile A.A.
    Wiebe N.
    Petruzzella M.
    O'brien J.L.
    Rarity J.G.
    Laing A.
    Thompson M.G.
    Nature Physics, 2017, 13 (6) : 551 - 555
  • [50] Hamiltonian engineering for quantum systems
    Schirmer, Sonia G.
    Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, 2007, 366 : 293 - 304