Secondary Quantum Hamiltonian Reductions

被引:0
|
作者
Jens Ole Madsen
Eric Ragoucy
机构
[1] Laboratoire de Physique Théorique ENSLAPP,
[2] groupe d'Annecy,undefined
[3] LAPP,undefined
[4] Chemin de Bellevue,undefined
[5] B.P. 110,undefined
[6] F-74941 Annecy-le-vieux Cedex,undefined
[7] France. E-mail: madsen@lapphp8.in2p3.fr,undefined
[8] ragoucy@lapp.in2p3.fr,undefined
来源
关键词
Hamiltonian Reduction; Secondary Quantum; Quantum Hamiltonian Reduction;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, it has been shown how to perform the quantum hamiltonian reduction in the case of general \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} embeddings into Lie (super)algebras, and in the case of general \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} embeddings into Lie superalgebras. In another development it has been shown that when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are both subalgebras of a Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, then classically the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} algebra can be obtained by performing a secondary hamiltonian reduction on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. In this paper we show that the corresponding statement is true also for quantum hamiltonian reduction when the simple roots of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} can be chosen as a subset of the simple roots of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. As an application, we show that the quantum secondary reductions provide a natural framework to study and explain the linearization of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} algebras, as well as a great number of new realizations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} algebras.
引用
收藏
页码:509 / 541
页数:32
相关论文
共 50 条
  • [31] A matrix integrable Hamiltonian hierarchy and its two integrable reductions
    Ma, Wen-Xiu
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025, 22 (03)
  • [32] Some reductions from a Lax integrable system and their Hamiltonian structures
    Wang, Xinzeng
    Dong, Huanhe
    Li, Yuxia
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (20) : 10032 - 10039
  • [33] ON HAMILTONIAN REDUCTIONS OF THE WESS-ZUMINO-NOVIKOV-WITTEN THEORIES
    FEHER, L
    ORAIFEARTAIGH, L
    RUELLE, P
    TSUTSUI, I
    WIPF, A
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (01): : 1 - 64
  • [34] On a Boussinesq Capillarity System: Hamiltonian Reductions and Associated Quartic Geometries
    Rogers, C.
    Schief, W. K.
    STUDIES IN APPLIED MATHEMATICS, 2014, 132 (01) : 1 - 12
  • [35] Hamiltonian Aspects of Quantum Theory
    Kozlov, V. V.
    Smolyanov, O. G.
    DOKLADY MATHEMATICS, 2012, 85 (03) : 416 - 420
  • [36] BEHAVIOR OF THE SPECTRUM OF A QUANTUM HAMILTONIAN
    CHAZARAIN, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (19): : 895 - 897
  • [37] Quantum Hamiltonian Physics with Supercomputers
    Vary, James P.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2014, 251 : 155 - 164
  • [38] Generalized quantum search Hamiltonian
    Bae, J
    Kwon, Y
    PHYSICAL REVIEW A, 2002, 66 (01): : 2
  • [39] DIFFUSION IN HAMILTONIAN QUANTUM SYSTEMS
    De Roeck, Wojciech
    MATHEMATICAL RESULTS IN QUANTUM PHYSICS, 2011, : 199 - 202
  • [40] Quantum Simulation with a Trilinear Hamiltonian
    Ding, Shiqian
    Maslennikov, Gleb
    Hablutzel, Roland
    Matsukevich, Dzmitry
    PHYSICAL REVIEW LETTERS, 2018, 121 (13)