Experimental quantum Hamiltonian learning

被引:0
|
作者
Wang J. [1 ]
Paesani S. [1 ]
Santagati R. [1 ]
Knauer S. [1 ]
Gentile A.A. [1 ]
Wiebe N. [2 ]
Petruzzella M. [3 ]
O'brien J.L. [1 ]
Rarity J.G. [1 ]
Laing A. [1 ]
Thompson M.G. [1 ]
机构
[1] Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory, Department of Electrical and Electronic Engineering, University of Bristol, Bristol
[2] Quantum Architectures and Computation Group, Microsoft Research, Redmond, 98052, WA
[3] Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
D O I
10.1038/nphys4074
中图分类号
学科分类号
摘要
The efficient characterization of quantum systems, the verification of the operations of quantum devices and the validation of underpinning physical models, are central challenges for quantum technologies and fundamental physics. The computational cost of such studies could be improved by machine learning enhanced by quantum simulators. Here we interface two different quantum systems through a classical channel - a silicon-photonics quantum simulator and an electron spin in a diamond nitrogen-vacancy centre - and use the former to learn the Hamiltonian of the latter via Bayesian inference. We learn the salient Hamiltonian parameter with an uncertainty of approximately 10 -5. Furthermore, an observed saturation in the learning algorithm suggests deficiencies in the underlying Hamiltonian model, which we exploit to further improve the model. We implement an interactive version of the protocol and experimentally show its ability to characterize the operation of the quantum photonic device. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
引用
收藏
页码:551 / 555
页数:4
相关论文
共 50 条
  • [1] Experimental quantum Hamiltonian learning
    Wang, Jianwei
    Paesani, Stefano
    Santagati, Raffaele
    Knauer, Sebastian
    Gentile, Antonio A.
    Wiebe, Nathan
    Petruzzella, Maurangelo
    O'Brien, Jeremy L.
    Rarity, John G.
    Laing, Anthony
    Thompson, Mark G.
    NATURE PHYSICS, 2017, 13 (06) : 551 - 555
  • [2] Hamiltonian learning in quantum field theories
    Ott, Robert
    Zache, Torsten, V
    Pruefer, Maximilian
    Erne, Sebastian
    Tajik, Mohammadamin
    Pichler, Hannes
    Zoller, Peter
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [3] Parameterized Hamiltonian Learning With Quantum Circuit
    Shi, Jinjing
    Wang, Wenxuan
    Lou, Xiaoping
    Zhang, Shichao
    Li, Xuelong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6086 - 6095
  • [4] Hamiltonian learning for quantum error correction
    Valenti, Agnes
    van Nieuwenburg, Evert
    Huber, Sebastian
    Greplova, Eliska
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [5] Quantum Variational Learning of the Entanglement Hamiltonian
    Kokail, Christian
    Sundar, Bhuvanesh
    Zache, Torsten, V
    Elben, Andreas
    Vermersch, Benoit
    Dalmonte, Marcello
    van Bijnen, Rick
    Zoller, Peter
    PHYSICAL REVIEW LETTERS, 2021, 127 (17)
  • [6] Quantum Hamiltonian learning using imperfect quantum resources
    Wiebe, Nathan
    Granade, Christopher
    Ferrie, Christopher
    Cory, David
    PHYSICAL REVIEW A, 2014, 89 (04)
  • [7] Quantum bootstrapping via compressed quantum Hamiltonian learning
    Wiebe, Nathan
    Granade, Christopher
    Cory, D. G.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [8] Experimental realization of Hamiltonian tomography by quantum quenches
    Chen, Xi
    Li, Yuchen
    Wu, Ze
    Liu, Ran
    Li, Zhaokai
    Zhou, Hui
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [9] Quantum Genetic Learning Control of Quantum Ensembles with Hamiltonian Uncertainties
    Arjmandzadeh, Ameneh
    Yarahmadi, Majid
    ENTROPY, 2017, 19 (08):
  • [10] Deep Learning Quantum States for Hamiltonian Estimation
    马欣然
    涂展春
    冉仕举
    Chinese Physics Letters, 2021, 38 (11) : 6 - 16