Experimental quantum Hamiltonian learning

被引:0
|
作者
Wang J. [1 ]
Paesani S. [1 ]
Santagati R. [1 ]
Knauer S. [1 ]
Gentile A.A. [1 ]
Wiebe N. [2 ]
Petruzzella M. [3 ]
O'brien J.L. [1 ]
Rarity J.G. [1 ]
Laing A. [1 ]
Thompson M.G. [1 ]
机构
[1] Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory, Department of Electrical and Electronic Engineering, University of Bristol, Bristol
[2] Quantum Architectures and Computation Group, Microsoft Research, Redmond, 98052, WA
[3] Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
D O I
10.1038/nphys4074
中图分类号
学科分类号
摘要
The efficient characterization of quantum systems, the verification of the operations of quantum devices and the validation of underpinning physical models, are central challenges for quantum technologies and fundamental physics. The computational cost of such studies could be improved by machine learning enhanced by quantum simulators. Here we interface two different quantum systems through a classical channel - a silicon-photonics quantum simulator and an electron spin in a diamond nitrogen-vacancy centre - and use the former to learn the Hamiltonian of the latter via Bayesian inference. We learn the salient Hamiltonian parameter with an uncertainty of approximately 10 -5. Furthermore, an observed saturation in the learning algorithm suggests deficiencies in the underlying Hamiltonian model, which we exploit to further improve the model. We implement an interactive version of the protocol and experimentally show its ability to characterize the operation of the quantum photonic device. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
引用
收藏
页码:551 / 555
页数:4
相关论文
共 50 条
  • [31] Model-Predictive Quantum Control via Hamiltonian Learning
    Clouatre M.
    Khojasteh M.J.
    Win M.Z.
    IEEE Transactions on Quantum Engineering, 2022, 3
  • [32] Adversarial Hamiltonian learning of quantum dots in a minimal Kitaev chain
    Koch R.
    Van Driel D.
    Bordin A.
    Lado J.L.
    Greplova E.
    Physical Review Applied, 2023, 20 (04)
  • [33] Experimental Liouvillian exceptional points in a quantum system without Hamiltonian singularities
    Abo, Shilan
    Tulewicz, Patrycja
    Bartkiewicz, Karol
    Ozdemir, Sahin K.
    Miranowicz, Adam
    NEW JOURNAL OF PHYSICS, 2024, 26 (12):
  • [34] Quantum-probabilistic Hamiltonian learning for generative modeling and anomaly detection
    Araz, Jack Y.
    Spannowsky, Michael
    PHYSICAL REVIEW A, 2023, 108 (06)
  • [35] Sampling-based Learning Control for Quantum Systems with Hamiltonian Uncertainties
    Dong, Daoyi
    Chen, Chunlin
    Long, Ruixing
    Qi, Bo
    Petersen, Ian R.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 1924 - 1929
  • [36] Experimental Quantum Embedding for Machine Learning
    Gianani, Ilaria
    Mastroserio, Ivana
    Buffoni, Lorenzo
    Bruno, Natalia
    Donati, Ludovica
    Cimini, Valeria
    Barbieri, Marco
    Cataliotti, Francesco S.
    Caruso, Filippo
    ADVANCED QUANTUM TECHNOLOGIES, 2022, 5 (08)
  • [37] Experimental quantum learning of a spectral decomposition
    Geller, Michael R.
    Holmes, Zoe
    Coles, Patrick J.
    Sornborger, Andrew
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [38] Experimental Machine Learning of Quantum States
    Gao, Jun
    Qiao, Lu-Feng
    Jiao, Zhi-Qiang
    Ma, Yue-Chi
    Hu, Cheng-Qiu
    Ren, Ruo-Jing
    Yang, Ai-Lin
    Tang, Hao
    Yung, Man-Hong
    Jin, Xian-Min
    PHYSICAL REVIEW LETTERS, 2018, 120 (24)
  • [39] HAMILTONIAN OF QUANTUM ELECTRONICS
    SAVOLAINEN, J
    STENHOLM, S
    AMERICAN JOURNAL OF PHYSICS, 1972, 40 (05) : 667 - +
  • [40] A Hamiltonian for quantum copying
    Mozyrsky, D
    Privman, V
    Hillery, M
    PHYSICS LETTERS A, 1997, 226 (05) : 253 - 256