Quantum bootstrapping via compressed quantum Hamiltonian learning

被引:28
|
作者
Wiebe, Nathan [1 ]
Granade, Christopher [2 ,3 ]
Cory, D. G. [3 ,4 ,5 ,6 ]
机构
[1] Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
[2] Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Perimeter Inst, Waterloo, ON N2L 2Y5, Canada
[6] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
基金
加拿大自然科学与工程研究理事会;
关键词
quantum information; characterization; Lieb-Robinson bounds; machine learning; quantum simulation; PROPAGATION; ALGORITHMS;
D O I
10.1088/1367-2630/17/2/022005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A major problem facing the development of quantum computers or large scale quantum simulators is that general methods for characterizing and controlling are intractable. We provide a new approach to this problem that uses small quantum simulators to efficiently characterize and learn control models for larger devices. Our protocol achieves this by using Bayesian inference in concert with Lieb-Robinson bounds and interactive quantum learning methods to achieve compressed simulations for characterization. We also show that the Lieb-Robinson velocity is epistemic for our protocol, meaning that information propagates at a rate that depends on the uncertainty in the system Hamiltonian. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an 8 qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while using only about 750 kilobits of experimental data. Finally, we provide upper bounds for the Fisher information that show that the number of experiments needed to characterize a system rapidly diverges as the duration of the experiments used in the characterization shrinks, which motivates the use of methods such as ours that do not require short evolution times.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Compressed quantum metrology for the Ising Hamiltonian
    Boyajian, W. L.
    Skotiniotis, M.
    Duer, W.
    Kraus, B.
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [2] Model-Predictive Quantum Control via Hamiltonian Learning
    Clouatre M.
    Khojasteh M.J.
    Win M.Z.
    IEEE Transactions on Quantum Engineering, 2022, 3
  • [3] Experimental quantum Hamiltonian learning
    Wang, Jianwei
    Paesani, Stefano
    Santagati, Raffaele
    Knauer, Sebastian
    Gentile, Antonio A.
    Wiebe, Nathan
    Petruzzella, Maurangelo
    O'Brien, Jeremy L.
    Rarity, John G.
    Laing, Anthony
    Thompson, Mark G.
    NATURE PHYSICS, 2017, 13 (06) : 551 - 555
  • [4] Experimental quantum Hamiltonian learning
    Wang J.
    Paesani S.
    Santagati R.
    Knauer S.
    Gentile A.A.
    Wiebe N.
    Petruzzella M.
    O'brien J.L.
    Rarity J.G.
    Laing A.
    Thompson M.G.
    Nature Physics, 2017, 13 (6) : 551 - 555
  • [5] Quantum Hamiltonian learning using imperfect quantum resources
    Wiebe, Nathan
    Granade, Christopher
    Ferrie, Christopher
    Cory, David
    PHYSICAL REVIEW A, 2014, 89 (04)
  • [6] Hamiltonian Tomography via Quantum Quench
    Li, Zhi
    Zou, Liujun
    Hsieh, Timothy H.
    PHYSICAL REVIEW LETTERS, 2020, 124 (16)
  • [7] Quantum Genetic Learning Control of Quantum Ensembles with Hamiltonian Uncertainties
    Arjmandzadeh, Ameneh
    Yarahmadi, Majid
    ENTROPY, 2017, 19 (08):
  • [8] Hamiltonian learning in quantum field theories
    Ott, Robert
    Zache, Torsten, V
    Pruefer, Maximilian
    Erne, Sebastian
    Tajik, Mohammadamin
    Pichler, Hannes
    Zoller, Peter
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [9] Parameterized Hamiltonian Learning With Quantum Circuit
    Shi, Jinjing
    Wang, Wenxuan
    Lou, Xiaoping
    Zhang, Shichao
    Li, Xuelong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6086 - 6095
  • [10] Bootstrapping quantum process tomography via a perturbative ansatz
    Govia, L. C. G.
    Ribeill, G. J.
    Riste, D.
    Ware, M.
    Krovi, H.
    NATURE COMMUNICATIONS, 2020, 11 (01)