Estimation of the pointwise Hölder exponent of hidden multifractional Brownian motion using wavelet coefficients

被引:4
|
作者
Jin S. [1 ]
Peng Q. [1 ]
Schellhorn H. [1 ]
机构
[1] Institute of Mathematical Sciences, Claremont Graduate University, 710 N. College Ave., Claremont, 91711, CA
关键词
Multifractional process; Parametric estimation; Pointwise Hölder exponent; Wavelet coefficients;
D O I
10.1007/s11203-016-9145-1
中图分类号
学科分类号
摘要
We propose a wavelet-based approach to construct consistent estimators of the pointwise Hölder exponent of a multifractional Brownian motion, in the case where this underlying process is not directly observed. The relative merits of our estimator are discussed, and we introduce an application to the problem of estimating the functional parameter of a nonlinear model. © 2016, Springer Science+Business Media Dordrecht.
引用
收藏
页码:113 / 140
页数:27
相关论文
共 50 条
  • [31] Glaucoma Classification Using Brownian Motion and Discrete Wavelet Transform
    Yun, Wong Li
    Mookiah, Muthu Rama Krishnan
    Koh, Joel E. W.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2014, 4 (04) : 621 - 627
  • [32] Memory effects in fractional Brownian motion with Hurst exponent H < 1/3
    Bologna, Mauro
    Vanni, Fabio
    Krokhin, Arkadii
    Grigolini, Paolo
    PHYSICAL REVIEW E, 2010, 82 (02):
  • [33] TEMPERED FRACTIONAL BROWNIAN MOTION: WAVELET ESTIMATION AND MODELING OF TURBULENCE IN GEOPHYSICAL FLOWS
    Boniece, B. C.
    Sabzikar, F.
    Didier, G.
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 174 - 178
  • [34] Modeling of locally self-similar processes using multifractional Brownian motion of Riemann-Liouville type
    Muniandy, SV
    Lim, SC
    PHYSICAL REVIEW E, 2001, 63 (04): : 461041 - 461047
  • [35] Block motion estimation using wavelet filtering
    Ates, HF
    Orchard, MT
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 2079 - 2082
  • [36] Video denoising using vector estimation of wavelet coefficients
    Lian, Nai-Xiang
    Zagorodnov, Vitali
    Tan, Yap-Peng
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 2673 - +
  • [37] Wavelet-Based Estimation of Hurst Exponent Using Neural Network
    Kirichenko, Lyudmyla
    Pavlenko, Kyrylo
    Khatsko, Daryna
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), 2022, : 40 - 43
  • [38] Motion estimation and motion compensation using an overcomplete discrete wavelet transform
    Zaciu, R
    Lamba, C
    Burlacu, C
    Nicula, G
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL I, 1996, : 973 - 976
  • [39] Temporal interpolation using wavelet domain motion estimation and motion compensation
    Fu, MF
    Au, O
    Chan, WC
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 393 - 396
  • [40] Optical flow estimation using wavelet motion model
    Wu, YT
    Kanade, T
    Cohn, J
    Li, CC
    SIXTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, 1998, : 992 - 998