Wavelet-Based Estimation of Hurst Exponent Using Neural Network

被引:2
|
作者
Kirichenko, Lyudmyla [1 ,2 ]
Pavlenko, Kyrylo [1 ]
Khatsko, Daryna [1 ]
机构
[1] Kharkiv Natl Univ Radioelect, Appl Math Dept, Kharkiv, Ukraine
[2] Wroclaw Univ Sci & Technol, Appl Math Dept, Wroclaw, Poland
关键词
Hurst exponent estimation; fractional Brownian motion; regression neural network; wavelet-based estimation;
D O I
10.1109/CSIT56902.2022.10000906
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper proposes a method for estimating the Hurst exponent of time realizations using a regression neural network. The basis was the wavelet estimation method using a discrete wavelet transform. Wavelet energy spectra of fractional Brownian motion realizations were fed to the input of the neural network. The results showed that the accuracy of the Hurst exponent estimation, performed using a neural network, is ten times higher than the accuracy of statistical wavelet-based estimation.
引用
收藏
页码:40 / 43
页数:4
相关论文
共 50 条
  • [1] Hurst exponent estimation using neural network
    Mukherjee, Somenath
    Sadhukhan, Bikash
    Das, Arghya Kusum
    Chaudhuri, Abhra
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2023, 26 (02) : 157 - 170
  • [2] Mixed Wavelet-Based Neural Network Model for Cyber Security Situation Prediction Using MODWT and Hurst Exponent Analysis
    He, Fannv
    Zhang, Yuqing
    Liu, Donghang
    Dong, Ying
    Liu, Caiyun
    Wu, Chensi
    [J]. NETWORK AND SYSTEM SECURITY, 2017, 10394 : 99 - 111
  • [3] Mammogram Diagnostics Using Robust Wavelet-Based Estimator of Hurst Exponent
    Feng, Chen
    Mei, Yajun
    Vidakovic, Brani
    [J]. NEW FRONTIERS OF BIOSTATISTICS AND BIOINFORMATICS, 2018, : 109 - 140
  • [4] Covid-19 impact on cryptocurrencies: Evidence from a wavelet-based Hurst exponent
    Belen Arouxet, M.
    Bariviera, Aurelio F.
    Pastor, Veronica E.
    Vampa, Victoria
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 596
  • [5] Electrocardiogram Diagnosis using Wavelet-based Artificial Neural Network
    Chen, Kun-Chih
    Ni, Yu-Shu
    Wang, Jhao-Yi
    [J]. 2016 IEEE 5TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS, 2016,
  • [6] Power disturbance classifier using wavelet-based neural network
    Kim, Hongkyun
    Lee, Jinmok
    Choi, Jaeho
    Chung, Gyo-Bum
    [J]. 2006 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-7, 2006, : 3279 - +
  • [7] Wavelet-based analysis of Hurst parameter estimation for self-similar traffic
    Li, YL
    Liu, GZ
    Li, HL
    Hou, XS
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 2061 - 2064
  • [8] A wavelet-based approach to the estimation of the Hurst parameter for self-similar data
    Giordano, S
    Miduri, S
    Pagano, M
    Russo, F
    Tartarelli, S
    [J]. DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 479 - 482
  • [9] A Note on Wavelet-Based Estimator of the Hurst Parameter
    Wu, Liang
    [J]. ENTROPY, 2020, 22 (03)
  • [10] Power quality monitoring system using wavelet-based neural network
    Kim, H
    Lee, J
    Choi, J
    Lee, S
    Kim, J
    [J]. 2004 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY - POWERCON, VOLS 1 AND 2, 2004, : 453 - 458