Estimation of the pointwise Hölder exponent of hidden multifractional Brownian motion using wavelet coefficients

被引:4
|
作者
Jin S. [1 ]
Peng Q. [1 ]
Schellhorn H. [1 ]
机构
[1] Institute of Mathematical Sciences, Claremont Graduate University, 710 N. College Ave., Claremont, 91711, CA
关键词
Multifractional process; Parametric estimation; Pointwise Hölder exponent; Wavelet coefficients;
D O I
10.1007/s11203-016-9145-1
中图分类号
学科分类号
摘要
We propose a wavelet-based approach to construct consistent estimators of the pointwise Hölder exponent of a multifractional Brownian motion, in the case where this underlying process is not directly observed. The relative merits of our estimator are discussed, and we introduce an application to the problem of estimating the functional parameter of a nonlinear model. © 2016, Springer Science+Business Media Dordrecht.
引用
收藏
页码:113 / 140
页数:27
相关论文
共 50 条
  • [41] Wavelet Cepstral Coefficients for Electrical Appliances Identification using Hidden Markov Models
    Hacine-Gharbi, Abdenour
    Ravier, Philippe
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM 2018), 2018, : 541 - 549
  • [42] Time Delay Estimation Using Continuous Wavelet Transform Coefficients
    Osman, A. B.
    Ovinis, M.
    Hashim, F. M.
    Mohammed, Kh.
    Osei, H.
    ADVANCED SCIENCE LETTERS, 2017, 23 (02) : 1299 - 1303
  • [43] Functional Limit Theorems for C-R Increments of k-Dimensional Brownian Motion in Hölder Norm
    Wei Q.
    Acta Mathematica Sinica, 2000, 16 (4) : 637 - 654
  • [44] Estimation of the Hurst parameter for fractional Brownian motion using the CMARS method
    Yerlikaya-Ozkurt, F.
    Vardar-Acar, C.
    Yolcu-Okur, Y.
    Weber, G. -W.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 843 - 850
  • [45] On the rapid estimation of permeability for porous media using Brownian motion paths
    Hwang, CO
    Given, JA
    Mascagni, M
    PHYSICS OF FLUIDS, 2000, 12 (07) : 1699 - 1709
  • [46] On optimal scale upper bound in wavelet-based estimation for hurst index of fractional Brownian motion
    Kawasaki, Shuhji
    Morita, Hiroyoshi
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2005, 8 (02) : 195 - 214
  • [47] Motion estimation using a complex-valued wavelet transform
    Magarey, J
    Kingsbury, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) : 1069 - 1084
  • [48] Estimation of interferogram aberration coefficients using wavelet bases and Zernike polynomials
    Elías-Juárez, A
    Razo-Razo, N
    Torres-Cisneros, M
    WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IX, 2001, 4478 : 373 - 382
  • [49] Multiresoloutional filtering for evoked potential estimation using wavelet transform coefficients
    Payam, Y
    Mohammad, M
    Ali, R
    PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, 23 : 1861 - 1861
  • [50] Wavelet image compression using universal coefficients matrix detail estimation
    Sánchez, LEU
    Meana, HMP
    Miyatake, MN
    14TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS, AND COMPUTERS, PROCEEDINGS, 2004, : 277 - 282