Derivation of a coupled Darcy–Reynolds equation for a fluid flow in a thin porous medium including a fissure

被引:0
|
作者
María Anguiano
Francisco Javier Suárez-Grau
机构
[1] Universidad de Sevilla,Departamento de Análisis Matemático, Facultad de Matemáticas
[2] Universidad de Sevilla,Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas
关键词
Stokes equation; Darcy’s law; Reynolds equation; Thin porous medium; Fissure; 75A05; 76A20; 76M50; 35B27;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of a fluid flow in a thin porous medium of thickness ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, which is characteristic size of the pores ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} and contains a fissure of width ηε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _\varepsilon $$\end{document}. We consider the limit when the size of the pores tends to zero, and we find a critical size ηε≈ε23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _\varepsilon \approx \varepsilon ^{2\over 3}$$\end{document} in which the flow is described by a 2D Darcy law coupled with a 1D Reynolds problem. We also discuss the other cases.
引用
收藏
相关论文
共 50 条
  • [41] Darcy's Law for Flow in a Periodic Thin Porous Medium Confined Between Two Parallel Plates
    Fabricius, John
    Hellstrom, J. Gunnar I.
    Lundstrom, T. Staffan
    Miroshnikova, Elena
    Wall, Peter
    TRANSPORT IN POROUS MEDIA, 2016, 115 (03) : 473 - 493
  • [42] Darcy’s Law for Flow in a Periodic Thin Porous Medium Confined Between Two Parallel Plates
    John Fabricius
    J. Gunnar I. Hellström
    T. Staffan Lundström
    Elena Miroshnikova
    Peter Wall
    Transport in Porous Media, 2016, 115 : 473 - 493
  • [43] Homogenization of a non-stationary non-Newtonian flow in a porous medium containing a thin fissure
    Anguiano, Maria
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (02) : 248 - 277
  • [44] Homogenization of one phase flow in a highly heterogeneous porous medium including a thin layer
    Amaziane, B.
    Pankratov, L.
    Prytula, V.
    ASYMPTOTIC ANALYSIS, 2010, 70 (1-2) : 51 - 86
  • [45] ANALYSIS OF DARCY FLOW IN CONFINED POROUS MEDIA INCLUDING WALL EFFECT
    Dukhan, Nihad
    PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011), 2012, : 293 - 297
  • [46] Derivation of the fractional porous medium equation from a microscopic dynamics
    Cardoso, Pedro
    de Paula, Renato
    Goncalves, Patricia
    NONLINEARITY, 2023, 36 (03) : 1840 - 1872
  • [47] HOMOGENIZE COUPLED STOKES-CAHN-HILLIARD SYSTEM TO DARCY'S LAW FOR TWO-PHASE FLUID FLOW IN POROUS MEDIUM BY VOLUME AVERAGING
    Chen, Jie
    Sun, Shuyu
    He, Zhengkang
    JOURNAL OF POROUS MEDIA, 2019, 22 (01) : 1 - 19
  • [48] Investigation of Post-Darcy Flow in Thin Porous Media
    Jouybari, Nima Fallah
    Lundstrom, T. Staffan
    TRANSPORT IN POROUS MEDIA, 2021, 138 (01) : 157 - 184
  • [49] Investigation of Post-Darcy Flow in Thin Porous Media
    Nima Fallah Jouybari
    T. Staffan Lundström
    Transport in Porous Media, 2021, 138 : 157 - 184
  • [50] Comment on the paper “Hydromagnetic thin film flow of Casson fluid in non-Darcy porous medium with Joule dissipation and Navier's partial slip”
    I.POP
    Applied Mathematics and Mechanics(English Edition), 2018, (07) : 1057 - 1058