Derivation of a coupled Darcy–Reynolds equation for a fluid flow in a thin porous medium including a fissure

被引:0
|
作者
María Anguiano
Francisco Javier Suárez-Grau
机构
[1] Universidad de Sevilla,Departamento de Análisis Matemático, Facultad de Matemáticas
[2] Universidad de Sevilla,Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas
关键词
Stokes equation; Darcy’s law; Reynolds equation; Thin porous medium; Fissure; 75A05; 76A20; 76M50; 35B27;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of a fluid flow in a thin porous medium of thickness ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, which is characteristic size of the pores ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} and contains a fissure of width ηε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _\varepsilon $$\end{document}. We consider the limit when the size of the pores tends to zero, and we find a critical size ηε≈ε23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _\varepsilon \approx \varepsilon ^{2\over 3}$$\end{document} in which the flow is described by a 2D Darcy law coupled with a 1D Reynolds problem. We also discuss the other cases.
引用
收藏
相关论文
共 50 条
  • [31] MHD Flow and Heat Transfer for Second Grade Fluid in a Porous Medium with Modified Darcy's Law
    Mohyuddin, Muhammad R.
    INTERNATIONAL JOURNAL OF FLUID MECHANICS RESEARCH, 2007, 34 (05) : 462 - 474
  • [32] Powell-Eyring fluid flow towards an isothermal sphere in a non-Darcy porous medium
    Gaffar, S. Abdul
    Ur-Rehman, Khalil
    Reddy, P. Ramesh
    Prasad, V. Ramachandra
    Khan, B. Md. Hidayathulla
    CANADIAN JOURNAL OF PHYSICS, 2019, 97 (10) : 1039 - 1048
  • [33] Solution for the poiseuille flow in a fluid channel with a porous medium insert by considering non-darcy effects
    Dai, Chuanshan
    Li, Qi
    Lei, Haiyan
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2015, 34 : 3455 - 3459
  • [34] Group invariant solution for a fluid-driven fracture with a non-Darcy flow in porous medium
    Nchabeleng, M. W.
    Fareo, A. G.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 115 : 41 - 48
  • [35] Darcy-Brinkman porous medium for dusty fluid flow with steady boundary layer flow in the presence of slip effect
    Rahman, Muhammad
    Waheed, H.
    Turkyilmazoglu, M.
    Siddiqui, M. Salman
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (11):
  • [36] Assessment of an equivalent porous medium for coupled stress and fluid flow in fractured rock
    Xiao, YX
    Lee, CF
    Wang, SJ
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1999, 36 (07) : 871 - 881
  • [37] VELOCITY DISTRIBUTION OF NON-DARCY FLOW IN A POROUS MEDIUM
    Leu, J. M.
    Chan, H. C.
    Tu, Lih-Fu
    Jia, Yafei
    Wang, S. Y.
    JOURNAL OF MECHANICS, 2009, 25 (01) : 49 - 58
  • [38] The Toda Flow as a Porous Medium Equation
    Boris Khesin
    Klas Modin
    Communications in Mathematical Physics, 2023, 401 : 1879 - 1898
  • [39] The Toda Flow as a Porous Medium Equation
    Khesin, Boris
    Modin, Klas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (02) : 1879 - 1898
  • [40] EFFECT OF THIN FIN ON NON-DARCY BUOYANCY FLOW IN A SQUARE CAVITY FILLED WITH POROUS MEDIUM
    Sathiyamoorthy, M.
    Narasimman, S.
    JOURNAL OF POROUS MEDIA, 2011, 14 (11) : 975 - 988