Homogenization of one phase flow in a highly heterogeneous porous medium including a thin layer

被引:6
|
作者
Amaziane, B. [1 ]
Pankratov, L. [1 ,2 ]
Prytula, V. [3 ]
机构
[1] Univ Pau, CNRS, UMR 5142, Lab Math & Applicat, F-64000 Pau, France
[2] B Verkin Inst Low Temp Phys & Engn, Dept Math, UA-61103 Kharkov, Ukraine
[3] Univ Castilla La Mancha, ETSII, Dept Matemat, IMACI, E-13071 Ciudad Real, Spain
关键词
double porosity models; fractured media; homogenization; thin layer; two-scale convergence; DOUBLE-POROSITY MODEL; CONVERGENCE; EQUATIONS;
D O I
10.3233/ASY-2010-1005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider a model problem describing one phase flow through a thin porous layer made of weakly permeable porous blocks separated by thin fissures. The flow is modeled by a linear parabolic equation considered in a bounded 2D domain with high contrast coefficients. The problem involves three small parameters: the first one characterizes the periodicity of the distribution of the blocks in the layer, the second one stands for the thickness of the layer, the third one characterizes the volume fraction of the fissure part in the layer. Using the notion of two-scale convergence, we derive the homogenized models which govern the global behavior of the flow when the small parameters tend to zero. The global models essentially depend on the relation between the small parameters.
引用
收藏
页码:51 / 86
页数:36
相关论文
共 50 条
  • [1] Homogenization of a single phase flow through a porous medium in a thin layer
    Amaziane, B.
    Pankratov, L.
    Piatnitski, A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (09): : 1317 - 1349
  • [2] Homogenization of a non-stationary Stokes flow in porous medium including a layer
    Zhao, Hongxing
    Yao, Zheng-an
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 108 - 124
  • [3] Homogenization of two phase flow through randomly heterogeneous porous media
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 1996, 76 (Suppl 4):
  • [4] Homogenization of immiscible compressible two-phase flow in highly heterogeneous porous media with discontinuous capillary pressures
    Amaziane, Brahim
    Pankratov, Leonid
    Piatnitski, Andrey
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (07): : 1421 - 1451
  • [5] HOMOGENIZATION OF A STATIONARY NAVIER-STOKES FLOW IN POROUS MEDIUM WITH THIN FILM
    姚正安
    赵红星
    Acta Mathematica Scientia, 2008, (04) : 963 - 974
  • [6] HOMOGENIZATION OF A STATIONARY NAVIER-STOKES FLOW IN POROUS MEDIUM WITH THIN FILM
    Yao Zhengan
    Zhao Hongxing
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (04) : 963 - 974
  • [7] Homogenization of an incompressible non-Newtonian flow through a thin porous medium
    María Anguiano
    Francisco Javier Suárez-Grau
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [8] Homogenization of an incompressible non-Newtonian flow through a thin porous medium
    Anguiano, Maria
    Javier Suarez-Grau, Francisco
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (02):
  • [9] Numerical simulation and homogenization of two-phase flow in heterogeneous porous media
    Ataie-Ashtiani, B
    Hassanizadeh, SM
    Oostrom, M
    White, MD
    GROUND WATER UPDATES, 2000, : 333 - 338
  • [10] Analysing an adaptive finite volume for flow in highly heterogeneous porous medium
    Khattri, Sanjay Kumar
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2008, 18 (02) : 237 - 257