Homogenization of one phase flow in a highly heterogeneous porous medium including a thin layer

被引:6
|
作者
Amaziane, B. [1 ]
Pankratov, L. [1 ,2 ]
Prytula, V. [3 ]
机构
[1] Univ Pau, CNRS, UMR 5142, Lab Math & Applicat, F-64000 Pau, France
[2] B Verkin Inst Low Temp Phys & Engn, Dept Math, UA-61103 Kharkov, Ukraine
[3] Univ Castilla La Mancha, ETSII, Dept Matemat, IMACI, E-13071 Ciudad Real, Spain
关键词
double porosity models; fractured media; homogenization; thin layer; two-scale convergence; DOUBLE-POROSITY MODEL; CONVERGENCE; EQUATIONS;
D O I
10.3233/ASY-2010-1005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider a model problem describing one phase flow through a thin porous layer made of weakly permeable porous blocks separated by thin fissures. The flow is modeled by a linear parabolic equation considered in a bounded 2D domain with high contrast coefficients. The problem involves three small parameters: the first one characterizes the periodicity of the distribution of the blocks in the layer, the second one stands for the thickness of the layer, the third one characterizes the volume fraction of the fissure part in the layer. Using the notion of two-scale convergence, we derive the homogenized models which govern the global behavior of the flow when the small parameters tend to zero. The global models essentially depend on the relation between the small parameters.
引用
收藏
页码:51 / 86
页数:36
相关论文
共 50 条
  • [41] Highly-porous diatom biosilica stationary phase for thin-layer chromatography
    Kraai, Joseph A.
    Rorrer, Gregory L.
    Wang, Alan X.
    JOURNAL OF CHROMATOGRAPHY A, 2019, 1591 : 162 - 170
  • [42] Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure
    Anguiano, Maria
    Javier Suarez-Grau, Francisco
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (02):
  • [43] EFFECTIVE HEAT TRANSFER BETWEEN A POROUS MEDIUM AND A FLUID LAYER: HOMOGENIZATION AND SIMULATION
    Eden, Michael
    Freudenberg, Tom
    MULTISCALE MODELING & SIMULATION, 2024, 22 (02): : 752 - 783
  • [44] Uncertainty quantification for flow in highly heterogeneous porous media
    Xiu, D
    Tartakovsky, DM
    Computational Methods in Water Resources, Vols 1 and 2, 2004, 55 : 695 - 703
  • [45] Numerical homogenization of two-phase flow in porous media
    Zijl, W
    Trykozko, A
    COMPUTATIONAL GEOSCIENCES, 2002, 6 (01) : 49 - 71
  • [46] Numerical Homogenization of Two-Phase Flow in Porous Media
    Wouter Zijl
    Anna Trykozko
    Computational Geosciences, 2002, 6 : 49 - 71
  • [47] Numerical homogenization of well singularities in the flow transport through heterogeneous porous media
    Chen, ZM
    Yue, XY
    MULTISCALE MODELING & SIMULATION, 2003, 1 (02): : 260 - 303
  • [48] Homogenization of a non-linear degenerate parabolic problem in a highly heterogeneous periodic medium
    Mabrouk, M
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (10) : 1141 - 1171
  • [49] Flow through a tube with an annual porous medium layer
    Masliyah, JH
    Afacan, A
    Liu, SJ
    JOURNAL OF POROUS MEDIA, 2005, 8 (02) : 193 - 210
  • [50] SINGLE-PHASE FLOW IN A POROUS MEDIUM
    MARLE, C
    REVUE DE L INSTITUT FRANCAIS DU PETROLE ET ANNALES DES COMBUSTIBLES LIQUIDES, 1967, 22 (10): : 1471 - &