On the Mahler measure of hyperelliptic families

被引:6
|
作者
Bertin M.J. [1 ]
Zudilin W. [2 ,3 ]
机构
[1] Institut de Mathématiques, Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, Paris
[2] Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn
[3] School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, 2308, NSW
基金
澳大利亚研究理事会;
关键词
Elliptic curve; Elliptic integral; Hyperelliptic curve; L-value; Mahler measure;
D O I
10.1007/s40316-016-0068-4
中图分类号
学科分类号
摘要
We prove Boyd’s “unexpected coincidence” of the Mahler measures for two families of two-variate polynomials defining curves of genus 2. We further equate the same measures to the Mahler measures of polynomials y3- y+ x3- x+ kxy whose zero loci define elliptic curves for k≠ 0 , ± 3. © 2016, The Author(s).
引用
收藏
页码:199 / 211
页数:12
相关论文
共 50 条
  • [31] Mahler Measure for a Quiver Symphony
    Jiakang Bao
    Yang-Hui He
    Ali Zahabi
    Communications in Mathematical Physics, 2022, 394 : 573 - 624
  • [32] MAHLER MEASURE AND THE WZ ALGORITHM
    Guillera, Jesus
    Rogers, Mathew
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 2873 - 2886
  • [33] Mahler Measure of Multivariable Polynomials
    Bertin, Marie-Jose
    Lalin, Matilde
    WOMEN IN NUMBERS 2: RESEARCH DIRECTIONS IN NUMBER THEORY, 2013, 606 : 125 - 147
  • [34] An algebraic integration for Mahler measure
    Lalin, Matilde N.
    DUKE MATHEMATICAL JOURNAL, 2007, 138 (03) : 391 - 422
  • [35] Bounding the elliptic Mahler measure
    Pinner, C
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 521 - 529
  • [36] Equations for Mahler measure and isogenies
    Lalin, Matilde N.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2013, 25 (02): : 387 - 399
  • [37] Mahler measure of Alexander polynomials
    Silver, DS
    Williams, SG
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 : 767 - 782
  • [38] Strebel differentials on families of hyperelliptic curves
    Artamkin I.V.
    Levitskaya Y.A.
    Shabat G.B.
    Journal of Mathematical Sciences, 2009, 158 (1) : 87 - 93
  • [39] Families of hyperelliptic curves with maximal slopes
    LIU XiaoLei
    TAN ShengLi
    Science China(Mathematics), 2013, 56 (09) : 1743 - 1750
  • [40] Point counting in families of hyperelliptic curves
    Hubrechts, Hendrik
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (01) : 137 - 169