Bounding the elliptic Mahler measure

被引:2
|
作者
Pinner, C [1 ]
机构
[1] Simon Fraser Univ, Ctr Expt & Construct Math, Burnaby, BC V5A 1S6, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
D O I
10.1017/S0305004198002795
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple inequality relating the elliptic Mahler measure of a polynomial to the traditional Mahler measure (via the length of the polynomial). These bounds are essentially sharp. We also give the corresponding result for polynomials in several variables.
引用
收藏
页码:521 / 529
页数:9
相关论文
共 50 条
  • [1] Bounding the elliptic Mahler measure II
    Everest, G
    Pinner, C
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 : 1 - 8
  • [2] Bounding the elliptic Mahler measure II (vol 2 pg 58, 1998)
    Everest, G
    Pinner, C
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 640 - 640
  • [3] The elliptic Mahler measure
    Everest, GR
    NiFhlathuin, B
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 : 13 - 25
  • [4] MAHLER MEASURE AND MODULAR ELLIPTIC SURFACES
    Benferhat, Leila
    QUAESTIONES MATHEMATICAE, 2010, 33 (02) : 231 - 243
  • [5] MAHLER MEASURE AND ELLIPTIC REGULATOR: SOME IDENTITIES
    Touafek, Nouressadat
    Kerada, Mohamed
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2007, 8 (02): : 271 - 285
  • [6] MAHLER MEASURE OF A NON-RECIPROCAL FAMILY OF ELLIPTIC CURVES
    Samart, Detchat
    QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (03): : 1187 - 1208
  • [7] Mahler measure and elliptic curve L-functions at s=3
    Lalin, Matilde
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 709 : 201 - 218
  • [8] Mahler's measure and elliptic regulator: Proof of two exotic relations
    Bertin, MJ
    NUMBER THEORY, 2004, 36 : 1 - 12
  • [9] ON MAHLER MEASURE OF A POLYNOMIAL
    DURAND, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (01) : 75 - 76
  • [10] An explicit Mahler measure
    Bertin, MJ
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (01): : 1 - 3