Constructive Approximation in de Branges–Rovnyak Spaces

被引:0
|
作者
Omar El-Fallah
Emmanuel Fricain
Karim Kellay
Javad Mashreghi
Thomas Ransford
机构
[1] Université Mohamed V,Laboratoire Analyse et Applications (URAC/03)
[2] Université des Sciences et Technologies Lille 1,Laboratoire Paul Painlevé, UFR des Mathématiques
[3] Université de Bordeaux,Institut de Mathématiques de Bordeaux
[4] Université Laval,Département de mathématiques et de statistique
来源
关键词
De Branges–Rovnyak space; Hardy space; Toeplitz operator; 46E22; 47B32;
D O I
暂无
中图分类号
学科分类号
摘要
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates fr(z):=f(rz)(r<1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_r(z):=f(rz)~(r<1)$$\end{document}. We show that this is not the case for the de Branges–Rovnyak spaces H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}. More precisely, we exhibit a space H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document} in which the polynomials are dense and a function f∈H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal{H}(b)$$\end{document} such that limr→1-‖fr‖H(b)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty $$\end{document}. On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}. If (hn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(h_n)$$\end{document} is a sequence in H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\infty $$\end{document} such that ‖hn‖H∞≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert h_n\Vert _{H^\infty }\le 1$$\end{document} and hn(0)→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_n(0)\rightarrow 1$$\end{document}, then ‖Th¯nf-f‖H(b)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0$$\end{document} for all f∈H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal{H}(b)$$\end{document}. Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\infty $$\end{document}, then the polynomials are dense in H(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(b)$$\end{document}.
引用
收藏
页码:269 / 281
页数:12
相关论文
共 50 条
  • [1] Constructive Approximation in de Branges-Rovnyak Spaces
    El-Fallah, Omar
    Fricain, Emmanuel
    Kellay, Karim
    Mashreghi, Javad
    Ransford, Thomas
    CONSTRUCTIVE APPROXIMATION, 2016, 44 (02) : 269 - 281
  • [2] De Branges-Rovnyak spaces and Dirichlet spaces
    Chevrot, Nicolas
    Guillot, Dominique
    Ransford, Thomas
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (09) : 2366 - 2383
  • [3] Multipliers of de Branges-Rovnyak spaces
    Lotto, BA
    Sarason, D
    HARMONIC ANALYSIS AND HYPERGROUPS, 1998, : 51 - 58
  • [4] INTERPOLATION IN DE BRANGES-ROVNYAK SPACES
    Ball, Joseph A.
    Bolotnikov, Vladimir
    Ter Horst, Sanne
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (02) : 609 - 618
  • [5] Embeddings into de Branges-Rovnyak spaces
    Malman, Bartosz
    Seco, Daniel
    STUDIA MATHEMATICA, 2024, 278 (02) : 173 - 194
  • [6] The Smirnov Class for de Branges–Rovnyak Spaces
    Emmanuel Fricain
    Andreas Hartmann
    William T. Ross
    Dan Timotin
    Results in Mathematics, 2022, 77
  • [7] Generalized de Branges-Rovnyak spaces
    Aleman, Alexandru
    Dahlin, Frej
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (11)
  • [8] On Cyclicity in de Branges-Rovnyak Spaces
    Bergman, Alex
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2024, 73 (04) : 1307 - 1329
  • [9] MULTIPLIERS OF DE BRANGES-ROVNYAK SPACES
    LOTTO, BA
    SARASON, D
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) : 907 - 920
  • [10] Composition Operators on de Branges–Rovnyak Spaces
    Emmanuel Fricain
    Muath Karaki
    Javad Mashreghi
    Results in Mathematics, 2019, 74