Kummer-type constructions of almost Ricci-flat 5-manifolds

被引:0
|
作者
Chanyoung Sung
机构
[1] Korea National University of Education,Department of Mathematics Education
来源
关键词
Almost Ricci-flat; Kummer-type construction; Collapsing; Primary 53C20; Secondary 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
A smooth closed manifold M is called almost Ricci-flat if infg||Ricg||∞·diamg(M)2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \inf _g||\text {Ric}_g||_\infty \cdot \text {diam}_g(M)^2=0 \end{aligned}$$\end{document}where Ricg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Ric}_g$$\end{document} and diamg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {diam}_g$$\end{document}, respectively, denote the Ricci tensor and the diameter of g and g runs over all Riemannian metrics on M. By using Kummer-type method, we construct a smooth closed almost Ricci-flat nonspin 5-manifold M which is simply connected. It is minimal volume vanishes; namely, it collapses with sectional curvature bounded.
引用
收藏
相关论文
共 50 条
  • [21] Correction to: Stability of ALE Ricci-Flat Manifolds Under Ricci Flow
    Alix Deruelle
    Klaus Kröncke
    The Journal of Geometric Analysis, 2021, 31 : 12635 - 12636
  • [22] The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds
    Hattori, Kota
    GEOMETRY & TOPOLOGY, 2017, 21 (05) : 2683 - 2723
  • [23] Examples of asymptotically conical Ricci-flat Kahler manifolds
    van Coevering, Craig
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) : 465 - 496
  • [24] HAUSDORFF PERTURBATIONS OF RICCI-FLAT MANIFOLDS AND THE SPLITTING THEOREM
    ANDERSON, MT
    DUKE MATHEMATICAL JOURNAL, 1992, 68 (01) : 67 - 82
  • [25] A gap theorem for Ricci-flat 4-manifolds
    Bhattacharya, Atreyee
    Seshadri, Harish
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 40 : 269 - 277
  • [26] Chern-flat and Ricci-flat invariant almost Hermitian structures
    Di Scala, Antonio J.
    Vezzoni, Luigi
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 40 (01) : 21 - 45
  • [27] Chern-flat and Ricci-flat invariant almost Hermitian structures
    Antonio J. Di Scala
    Luigi Vezzoni
    Annals of Global Analysis and Geometry, 2011, 40 : 21 - 45
  • [28] Chern Flat and Chern Ricci-Flat Twisted Product Hermitian Manifolds
    Li, Shuwen
    He, Yong
    Lu, Weina
    Yang, Ruijia
    MATHEMATICS, 2024, 12 (03)
  • [29] Brownian motion on Perelman's almost Ricci-flat manifold
    Cabezas-Rivas, Esther
    Haslhofer, Robert
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 : 217 - 239
  • [30] A Kummer construction for Chern-Ricci flat balanced manifolds
    Giusti, Federico
    Spotti, Cristiano
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (04)