Brownian motion on Perelman's almost Ricci-flat manifold

被引:1
|
作者
Cabezas-Rivas, Esther [1 ]
Haslhofer, Robert [2 ]
机构
[1] Goethe Univ Frankfurt, Robert Mayer Str 10, D-60325 Frankfurt, Germany
[2] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
METRIC-MEASURE-SPACES; CURVATURE-DIMENSION CONDITION; DIFFUSION PROCESSES; INEQUALITY; TRANSPORT;
D O I
10.1515/crelle-2019-0014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Brownian motion and stochastic parallel transport on Perelman's almost Ricci flat manifold M = M x S-N x I, whose dimension depends on a parameter N unbounded from above. We construct sequences of projected Brownian motions and stochastic parallel transports which for N -> infinity converge to the corresponding objects for the Ricci flow. In order to make precise this process of passing to the limit, we study the martingale problems for the Laplace operator on At and for the horizontal Laplacian on the orthonormal frame bundle OM. As an application, we see how the characterizations of two-sided bounds on the Ricci curvature established by A. Naber applied to Perelman's manifold lead to the inequalities that characterize solutions of the Ricci flow discovered by Naber and the second author.
引用
收藏
页码:217 / 239
页数:23
相关论文
共 50 条
  • [1] Perelman’s lambda-functional and the stability of Ricci-flat metrics
    Robert Haslhofer
    [J]. Calculus of Variations and Partial Differential Equations, 2012, 45 : 481 - 504
  • [2] Perelman's lambda-functional and the stability of Ricci-flat metrics
    Haslhofer, Robert
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 45 (3-4) : 481 - 504
  • [3] ON NONCOLLAPSED ALMOST RICCI-FLAT 4-MANIFOLDS
    Kapovitch, Vitali
    Lott, John
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (03) : 737 - 755
  • [4] Chern-flat and Ricci-flat invariant almost Hermitian structures
    Antonio J. Di Scala
    Luigi Vezzoni
    [J]. Annals of Global Analysis and Geometry, 2011, 40 : 21 - 45
  • [5] Chern-flat and Ricci-flat invariant almost Hermitian structures
    Di Scala, Antonio J.
    Vezzoni, Luigi
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 40 (01) : 21 - 45
  • [6] The collapsing geometry of almost Ricci-flat 4-manifolds
    Lott, John
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (01) : 79 - 98
  • [7] Ricci-flat branes
    Brecher, D
    Perry, MJ
    [J]. NUCLEAR PHYSICS B, 2000, 566 (1-2) : 151 - 172
  • [8] More Ricci-flat branes
    Figueroa-O'Farrill, JM
    [J]. PHYSICS LETTERS B, 1999, 471 (2-3) : 128 - 132
  • [9] Some Ricci-flat (α, β)-metrics
    Sevim, Esra Sengelen
    Ulgen, Semail
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 151 - 157
  • [10] Warped Ricci-flat reductions
    Colgain, E. O.
    Sheikh-Jabbari, M. M.
    Vazquez-Poritz, J. F.
    Yavartanoo, H.
    Zhang, Z.
    [J]. PHYSICAL REVIEW D, 2014, 90 (04):