Perelman's lambda-functional and the stability of Ricci-flat metrics

被引:16
|
作者
Haslhofer, Robert [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
PARALLEL SPINORS; FLOW; SPACE; CURVATURE; MANIFOLDS; EQUATION; COMPACT; PROOF;
D O I
10.1007/s00526-011-0468-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce a new method (based on Perelman's lambda-functional) to study the stability of compact Ricci-flat metrics. Under the assumption that all infinitesimal Ricci-flat deformations are integrable we prove: (a) a Ricci-flat metric is a local maximizer of lambda in a C (2,alpha) -sense if and only if its Lichnerowicz Laplacian is nonpositive, (b) lambda satisfies a Aojasiewicz-Simon gradient inequality, (c) the Ricci flow does not move excessively in gauge directions. As consequences, we obtain a rigidity result, a new proof of Sesum's dynamical stability theorem, and a dynamical instability theorem.
引用
收藏
页码:481 / 504
页数:24
相关论文
共 50 条
  • [1] Perelman’s lambda-functional and the stability of Ricci-flat metrics
    Robert Haslhofer
    [J]. Calculus of Variations and Partial Differential Equations, 2012, 45 : 481 - 504
  • [2] Stability of the Ricci flow at Ricci-flat metrics
    Guenther, C
    Isenberg, J
    Knopf, D
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2002, 10 (04) : 741 - 777
  • [3] Dynamical stability and instability of Ricci-flat metrics
    Haslhofer, Robert
    Mueller, Reto
    [J]. MATHEMATISCHE ANNALEN, 2014, 360 (1-2) : 547 - 553
  • [4] Dynamical stability and instability of Ricci-flat metrics
    Robert Haslhofer
    Reto Müller
    [J]. Mathematische Annalen, 2014, 360 : 547 - 553
  • [5] Linear and dynamical stability of Ricci-flat metrics
    Sesum, Natasa
    [J]. DUKE MATHEMATICAL JOURNAL, 2006, 133 (01) : 1 - 26
  • [6] Brownian motion on Perelman's almost Ricci-flat manifold
    Cabezas-Rivas, Esther
    Haslhofer, Robert
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 : 217 - 239
  • [7] Some Ricci-flat (α, β)-metrics
    Sevim, Esra Sengelen
    Ulgen, Semail
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 151 - 157
  • [8] Dynamical (In)Stability of Ricci-flat ALE metrics along the Ricci flow
    Deruelle, Alix
    Ozuch, Tristan
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (03)
  • [9] Ricci-flat Douglas (α, β)-metrics
    Tian, Yanfang
    Cheng, Xinyue
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (01) : 20 - 32
  • [10] Dynamical (In)Stability of Ricci-flat ALE metrics along the Ricci flow
    Alix Deruelle
    Tristan Ozuch
    [J]. Calculus of Variations and Partial Differential Equations, 2023, 62