Chern-flat and Ricci-flat invariant almost Hermitian structures

被引:18
|
作者
Di Scala, Antonio J. [1 ]
Vezzoni, Luigi [2 ]
机构
[1] Politecn Torino, Dipartimento Matemat, Turin, Italy
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
关键词
Homogeneous spaces; Almost Hermitian structure; Chern connection; Ricci tensor; ABELIAN COMPLEX STRUCTURES; MANIFOLDS; NILMANIFOLDS; GEOMETRY;
D O I
10.1007/s10455-010-9243-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study left-invariant almost Hermitian structures on homogeneous spaces having either flat Chern connection or flat Ricci-Chern form. Many examples are carefully described, and a classification is given in low dimensions.
引用
收藏
页码:21 / 45
页数:25
相关论文
共 50 条
  • [1] Chern-flat and Ricci-flat invariant almost Hermitian structures
    Antonio J. Di Scala
    Luigi Vezzoni
    Annals of Global Analysis and Geometry, 2011, 40 : 21 - 45
  • [2] Chern Flat and Chern Ricci-Flat Twisted Product Hermitian Manifolds
    Li, Shuwen
    He, Yong
    Lu, Weina
    Yang, Ruijia
    MATHEMATICS, 2024, 12 (03)
  • [3] Chern flat, Chern-Ricci flat twisted product in almost Hermitian geometry
    Kawamura, Masaya
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2025, 45 (01): : 1 - 14
  • [4] ON NONCOLLAPSED ALMOST RICCI-FLAT 4-MANIFOLDS
    Kapovitch, Vitali
    Lott, John
    AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (03) : 737 - 755
  • [5] Ricci-flat branes
    Brecher, D
    Perry, MJ
    NUCLEAR PHYSICS B, 2000, 566 (1-2) : 151 - 172
  • [6] Brownian motion on Perelman's almost Ricci-flat manifold
    Cabezas-Rivas, Esther
    Haslhofer, Robert
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 : 217 - 239
  • [7] The collapsing geometry of almost Ricci-flat 4-manifolds
    Lott, John
    COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (01) : 79 - 98
  • [8] More Ricci-flat branes
    Figueroa-O'Farrill, JM
    PHYSICS LETTERS B, 1999, 471 (2-3) : 128 - 132
  • [9] Some Ricci-flat (α, β)-metrics
    Sevim, Esra Sengelen
    Ulgen, Semail
    PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 151 - 157
  • [10] A new Ricci-flat geometry
    Pal, SS
    PHYSICS LETTERS B, 2005, 614 (3-4) : 201 - 206