Vector fields which are biharmonic maps

被引:0
|
作者
Amina Alem
Bouazza Kacimi
Mustafa Özkan
机构
[1] University of Mascara,Department of Mathematics, Faculty of Exact Sciences
[2] Gazi University,Department of Mathematics, Faculty of Sciences
来源
Journal of Geometry | 2022年 / 113卷
关键词
Tangent bundle; Sasaki metric; Biharmonic maps; Primary 58E20; Secondary 53C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an explicit expression of the bitension field of a vector field considered as a map from a Riemannian manifold (M, g) to its tangent bundle TM equipped with the Sasaki metric gS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{S}$$\end{document} is provided. As a consequence, we show characterization theorem for a vector field to be biharmonic map. We prove non-existence results for left-invariant vector fields which are biharmonic without being harmonic maps and non-harmonic biharmonic maps respectively on unimodular Lie groups of dimension three.
引用
收藏
相关论文
共 50 条
  • [1] Vector fields which are biharmonic maps
    Alem, Amina
    Kacimi, Bouazza
    Ozkan, Mustafa
    JOURNAL OF GEOMETRY, 2022, 113 (01)
  • [2] On the biharmonic vector fields
    Djaa, Mustapha
    Elhendi, Hichem
    Ouakkas, Seddik
    TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (03) : 463 - 474
  • [3] Unit vector fields on spheres, which are harmonic maps
    Han, DS
    Yim, JW
    MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (01) : 83 - 92
  • [4] Unit vector fields on spheres, which are harmonic maps
    Dong-Soong Han
    Jin-Whan Yim
    Mathematische Zeitschrift, 1998, 227 : 83 - 92
  • [5] UNIT VECTOR FIELDS ON REAL SPACE FORMS WHICH ARE HARMONIC MAPS
    Perrone, Domenico
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (01) : 89 - 104
  • [6] Planar biharmonic vector fields; potentials and traces
    Auchmuty, Giles
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2023, 8 (03) : 413 - 426
  • [7] Biharmonic vector fields on pseudo-Riemannian manifolds
    Markellos, M.
    Urakawa, H.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 130 : 293 - 314
  • [8] A note on equivariant biharmonic maps and stable biharmonic maps
    Ou, Ye-Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [9] Harmonic Maps and Biharmonic Maps
    Urakawa, Hajime
    SYMMETRY-BASEL, 2015, 7 (02): : 651 - 674
  • [10] Vector fields and maps - A perturbation approach
    Davies, HG
    Karagiozis, K
    IUTAM SYMPOSIUM ON NONLINEARITY AND STOCHASTIC STRUCTURAL DYNAMICS, 2001, 85 : 71 - 76