Thermo-structural analysis of TeO2–Li2O–MoO3 glasses

被引:0
|
作者
João L. Gomes
Anderson Gonçalves
Aloisi Somer
Jaqueline V. Gunha
Gerson K. Cruz
Andressa Novatski
机构
[1] Universidade Estadual de Ponta Grossa,Departamento de Física
关键词
Tellurite glasses; Characteristic temperature; Density; Molar volume; Molecular electron polarizability;
D O I
暂无
中图分类号
学科分类号
摘要
This work discusses some new insights into the structural and thermal properties of the glass system TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document}–Li2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}_{2}\hbox {O}$$\end{document}–MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document}. Glasses in the composition (80-2x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(80 - 2x)$$\end{document}TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document} − xLi2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\hbox {Li}_{2}\hbox {O}$$\end{document} − (20+x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(20 + x)$$\end{document}MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} (TLM) where x=0,5,10,15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\,=\,0,\,5,\,10,\,15$$\end{document} and 20 mol% were prepared by the melt-quenching technique and were characterized by X-ray diffraction (XRD), Raman spectroscopy, density, refractive index, and differential scanning calorimetry (DSC). XRD data confirmed the amorphous character of the samples. In addition, the glass transition (Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{g}}$$\end{document}), the onset crystallization (Tx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{x}}$$\end{document}), and the first exothermic peak at the crystallization temperatures (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{c}}$$\end{document}) were determined from DSC scans. Thermal stability (ΔT=Tx-Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T = T_{\mathrm{x}}-T_{\mathrm{g}}$$\end{document}) increases up to x=15mol%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\,=\,15\,\hbox {mol}\%$$\end{document} followed by a decrease for higher x. Raman results showed that when x increases, the Te–O–Mo linkages form, meaning that Li2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O addition breaks the Te units and Mo-units in the studied glasses. The Te–O–Mo linkages enhance the thermal stability values, increasing the oxygen packing density. The formation of these linkages also alters the refractive index and the electronic polarizability behaviors. In summary, this work shows that the addition of Li2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}_2\hbox {O}$$\end{document} in the TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document}–MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} system enhances the thermal stability and changes the electronic polarizability behavior, showing the potential of the studied material for technological applications.
引用
收藏
页码:1439 / 1445
页数:6
相关论文
共 50 条
  • [41] Structural, optical, and shielding investigations of TeO2–GeO2–ZnO–Li2O–Bi2O3 glass system for radiation protection applications
    M. I. Sayyed
    M. H. A. Mhareb
    Zinah Yaseen Abbas
    Nouf Almousa
    Farah Laariedh
    Kawa M. Kaky
    S. O. Baki
    Applied Physics A, 2019, 125
  • [42] Preparation and structural studies in the (70 − x)TeO2–20WO3–10Li2O–xLn2O3 glasses
    I. Z. Hager
    R. El-Mallawany
    Journal of Materials Science, 2010, 45 : 897 - 905
  • [43] Structural and electrical properties of MoO3-TeO2 glasses
    Pal, M
    Hirota, K
    Tsujigami, Y
    Sakata, H
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (04) : 459 - 464
  • [44] Structural and magnetic properties of MoO3-TeO2 glasses
    Mekki, A
    Khattak, GD
    Wenger, LE
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2005, 351 (30-32) : 2493 - 2500
  • [45] Specific absorption coefficient of cobalt(II) in (TeO2)0.80(MoO3)0.20 glass
    Zamyatin, O. A.
    Churbanov, M. F.
    Plotnichenko, V. G.
    Kharakhordin, A. V.
    Sibirkin, A. A.
    Fedotova, I. G.
    INORGANIC MATERIALS, 2015, 51 (06) : 631 - 634
  • [46] Specific absorption coefficient of cobalt(II) in (TeO2)0.80(MoO3)0.20 glass
    O. A. Zamyatin
    M. F. Churbanov
    V. G. Plotnichenko
    A. V. Kharakhordin
    A. A. Sibirkin
    I. G. Fedotova
    Inorganic Materials, 2015, 51 : 631 - 634
  • [47] Thermal study of A2O(MoO3)2-P2O5 (A=Li,Na) glasses
    Bih, L
    Nadiri, A
    Aride, J
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2002, 68 (03): : 965 - 972
  • [48] Structure and properties of a non-traditional glass containing TeO2, SeO2 and MoO3
    Bachvarova-Nedelcheva, A.
    Iordanova, R.
    Kostov, K. L.
    Yordanov, St
    Canev, V.
    OPTICAL MATERIALS, 2012, 34 (11) : 1781 - 1787
  • [49] Thermal Study of A2O–(MoO3)2–P2O5 (A=Li, Na) Glasses
    L. Bih
    A. Nadiri
    J. Aride
    Journal of Thermal Analysis and Calorimetry, 2002, 68 : 965 - 972
  • [50] Structural, thermal and photoluminescent properties of Eu2O3-Li2O-TeO2 glasses
    Hirdesh
    Khanna, Atul
    JOURNAL OF LUMINESCENCE, 2018, 204 : 319 - 326