Thermo-structural analysis of TeO2–Li2O–MoO3 glasses

被引:0
|
作者
João L. Gomes
Anderson Gonçalves
Aloisi Somer
Jaqueline V. Gunha
Gerson K. Cruz
Andressa Novatski
机构
[1] Universidade Estadual de Ponta Grossa,Departamento de Física
关键词
Tellurite glasses; Characteristic temperature; Density; Molar volume; Molecular electron polarizability;
D O I
暂无
中图分类号
学科分类号
摘要
This work discusses some new insights into the structural and thermal properties of the glass system TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document}–Li2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}_{2}\hbox {O}$$\end{document}–MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document}. Glasses in the composition (80-2x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(80 - 2x)$$\end{document}TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document} − xLi2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\hbox {Li}_{2}\hbox {O}$$\end{document} − (20+x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(20 + x)$$\end{document}MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} (TLM) where x=0,5,10,15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\,=\,0,\,5,\,10,\,15$$\end{document} and 20 mol% were prepared by the melt-quenching technique and were characterized by X-ray diffraction (XRD), Raman spectroscopy, density, refractive index, and differential scanning calorimetry (DSC). XRD data confirmed the amorphous character of the samples. In addition, the glass transition (Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{g}}$$\end{document}), the onset crystallization (Tx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{x}}$$\end{document}), and the first exothermic peak at the crystallization temperatures (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{c}}$$\end{document}) were determined from DSC scans. Thermal stability (ΔT=Tx-Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T = T_{\mathrm{x}}-T_{\mathrm{g}}$$\end{document}) increases up to x=15mol%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\,=\,15\,\hbox {mol}\%$$\end{document} followed by a decrease for higher x. Raman results showed that when x increases, the Te–O–Mo linkages form, meaning that Li2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O addition breaks the Te units and Mo-units in the studied glasses. The Te–O–Mo linkages enhance the thermal stability values, increasing the oxygen packing density. The formation of these linkages also alters the refractive index and the electronic polarizability behaviors. In summary, this work shows that the addition of Li2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}_2\hbox {O}$$\end{document} in the TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document}–MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} system enhances the thermal stability and changes the electronic polarizability behavior, showing the potential of the studied material for technological applications.
引用
收藏
页码:1439 / 1445
页数:6
相关论文
共 50 条
  • [31] Synthesis and characterization of Cu2O•TeO2 and CuI•Cu2O•TeO2 glasses
    Chowdari, BVR
    Tan, KL
    Ling, F
    JOURNAL OF MATERIALS SCIENCE, 2000, 35 (08) : 2015 - 2027
  • [32] Specific absorption coefficient of nickel in (TeO2)0.80(MoO3)0.20 glass
    O. A. Zamyatin
    M. F. Churbanov
    V. G. Plotnichenko
    A. A. Sibirkin
    I. G. Goreva
    Inorganic Materials, 2015, 51 : 278 - 282
  • [33] Specific absorption coefficient of copper in (TeO2)0.80(MoO3)0.20 glass
    Zamyatin, O. A.
    Churbanov, M. F.
    Plotnichenko, V. G.
    Sibirkin, A. A.
    Fedotova, I. G.
    Gavrin, S. A.
    INORGANIC MATERIALS, 2015, 51 (12) : 1283 - 1287
  • [34] Specific absorption coefficient of chromium in (TeO2)0.80(MoO3)0.20 glass
    Zamyatin, O. A.
    Churbanov, M. F.
    Zamyatina, E. V.
    Gavrin, S. A.
    Sibirkin, A. A.
    INORGANIC MATERIALS, 2016, 52 (12) : 1307 - 1310
  • [35] Polarizability, Optical Basicity, and Photon Attenuation Properties of Ag2O–MoO3–V2O5–TeO2 Glasses: The Role of Silver Oxide
    M. S. Al-Buriahi
    H. H. Somaily
    Amani Alalawi
    Shoroog Alraddadi
    Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31 : 1047 - 1056
  • [36] Synthesis and characterization of Cu2O·TeO2 and CuI·Cu2O·TeO2 glasses
    B. V. R. Chowdari
    K. L. Tan
    Fang Ling
    Journal of Materials Science, 2000, 35 : 2015 - 2027
  • [37] Spectral analysis of Cu2+:: B2O3-(TeO2/CdO/ZnO)-Li2O-AlF3 glasses
    Reddy, B. Sudhakar
    Buddhudu, S.
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2006, 44 (12) : 887 - 895
  • [38] Specific absorption coefficient of copper in (TeO2)0.80(MoO3)0.20 glass
    O. A. Zamyatin
    M. F. Churbanov
    V. G. Plotnichenko
    A. A. Sibirkin
    I. G. Fedotova
    S. A. Gavrin
    Inorganic Materials, 2015, 51 : 1283 - 1287
  • [39] Specific absorption coefficient of nickel in (TeO2)0.80(MoO3)0.20 glass
    Zamyatin, O. A.
    Churbanov, M. F.
    Plotnichenko, V. G.
    Sibirkin, A. A.
    Goreva, I. G.
    INORGANIC MATERIALS, 2015, 51 (03) : 278 - 282
  • [40] Influence of BaTiO3 on physical and optical studies of Na2B4O7–MoO3–TeO2 glasses reinforced with vanadium ions
    Arukula Balakrishna
    B. Srikantha Chary
    K. Chandra Sekhar
    Md. Samdani
    The European Physical Journal Plus, 137