Thermo-structural analysis of TeO2–Li2O–MoO3 glasses

被引:0
|
作者
João L. Gomes
Anderson Gonçalves
Aloisi Somer
Jaqueline V. Gunha
Gerson K. Cruz
Andressa Novatski
机构
[1] Universidade Estadual de Ponta Grossa,Departamento de Física
关键词
Tellurite glasses; Characteristic temperature; Density; Molar volume; Molecular electron polarizability;
D O I
暂无
中图分类号
学科分类号
摘要
This work discusses some new insights into the structural and thermal properties of the glass system TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document}–Li2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}_{2}\hbox {O}$$\end{document}–MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document}. Glasses in the composition (80-2x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(80 - 2x)$$\end{document}TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document} − xLi2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\hbox {Li}_{2}\hbox {O}$$\end{document} − (20+x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(20 + x)$$\end{document}MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} (TLM) where x=0,5,10,15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\,=\,0,\,5,\,10,\,15$$\end{document} and 20 mol% were prepared by the melt-quenching technique and were characterized by X-ray diffraction (XRD), Raman spectroscopy, density, refractive index, and differential scanning calorimetry (DSC). XRD data confirmed the amorphous character of the samples. In addition, the glass transition (Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{g}}$$\end{document}), the onset crystallization (Tx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{x}}$$\end{document}), and the first exothermic peak at the crystallization temperatures (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{c}}$$\end{document}) were determined from DSC scans. Thermal stability (ΔT=Tx-Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T = T_{\mathrm{x}}-T_{\mathrm{g}}$$\end{document}) increases up to x=15mol%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\,=\,15\,\hbox {mol}\%$$\end{document} followed by a decrease for higher x. Raman results showed that when x increases, the Te–O–Mo linkages form, meaning that Li2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O addition breaks the Te units and Mo-units in the studied glasses. The Te–O–Mo linkages enhance the thermal stability values, increasing the oxygen packing density. The formation of these linkages also alters the refractive index and the electronic polarizability behaviors. In summary, this work shows that the addition of Li2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}_2\hbox {O}$$\end{document} in the TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document}–MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} system enhances the thermal stability and changes the electronic polarizability behavior, showing the potential of the studied material for technological applications.
引用
收藏
页码:1439 / 1445
页数:6
相关论文
共 50 条
  • [21] Mechanical and radiation-shielding properties of B2O3–P2O5–Li2O–MoO3 glasses
    Kh. S. Shaaban
    H. Y. Zahran
    I. S. Yahia
    H. I. Elsaeedy
    E. R. Shaaban
    Sayed A. Makhlouf
    E. A. Abdel Wahab
    El Sayed Yousef
    Applied Physics A, 2020, 126
  • [22] Gamma-ray attenuation competences and optical characterization of MgO–MoO3–TeO2–BaO glasses
    Y. Al-Hadeethi
    M. I. Sayyed
    Bahaaudin M. Raffah
    E. Bekyarova
    Y. S. Rammah
    Applied Physics A, 2020, 126
  • [23] Crystallization kinetics of (TeO2)1–x(MoO3)x glasses studied by differential scanning calorimetry
    A. M. Kut’in
    A. D. Plekhovich
    A. A. Sibirkin
    Inorganic Materials, 2015, 51 : 1288 - 1295
  • [24] Radiation shielding performance of Co2O3–TeO2–Li2O–ZrO2 glass–ceramics
    M. S. Al-Buriahi
    Jamila S. Alzahrani
    H. H. Somaily
    Z. A. Alrowaili
    I. O. Olarinoye
    H. H. Saleh
    Journal of the Australian Ceramic Society, 2022, 58 : 1199 - 1207
  • [25] STRUCTURAL STUDY OF MOO3-TEO2 GLASSES
    SEKIYA, T
    MOCHIDA, N
    OGAWA, S
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1995, 185 (1-2) : 135 - 144
  • [26] Crystallization kinetics of (TeO2)1-x (MoO3) x glasses studied by differential scanning calorimetry
    Kut'in, A. M.
    Plekhovich, A. D.
    Sibirkin, A. A.
    INORGANIC MATERIALS, 2015, 51 (12) : 1288 - 1295
  • [27] EFFECT OF ION-BOMBARDMENT ON STRUCTURE OF BI2O3, MOO3, TEO2, AND V2O5
    NAGUIB, HM
    KELLY, R
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1975, 25 (02): : 79 - 89
  • [28] A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses
    Z. A. Alrowaili
    Atif Mossad Ali
    Ateyyah M. Al-Baradi
    M. S. Al-Buriahi
    E. A. Abdel Wahab
    Kh. S. Shaaban
    Optical and Quantum Electronics, 2022, 54
  • [29] Specific absorption coefficient of chromium in (TeO2)0.80(MoO3)0.20 glass
    O. A. Zamyatin
    M. F. Churbanov
    E. V. Zamyatina
    S. A. Gavrin
    A. A. Sibirkin
    Inorganic Materials, 2016, 52 : 1307 - 1310
  • [30] Nonlinear optical properties of TeO2-based glasses: Li(Na and K)2O–TeO2 binary glasses
    Sae-Hoon Kim
    Journal of Materials Research, 1999, 14 : 1074 - 1083