Thermo-structural analysis of TeO2–Li2O–MoO3 glasses

被引:0
|
作者
João L. Gomes
Anderson Gonçalves
Aloisi Somer
Jaqueline V. Gunha
Gerson K. Cruz
Andressa Novatski
机构
[1] Universidade Estadual de Ponta Grossa,Departamento de Física
关键词
Tellurite glasses; Characteristic temperature; Density; Molar volume; Molecular electron polarizability;
D O I
暂无
中图分类号
学科分类号
摘要
This work discusses some new insights into the structural and thermal properties of the glass system TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document}–Li2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}_{2}\hbox {O}$$\end{document}–MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document}. Glasses in the composition (80-2x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(80 - 2x)$$\end{document}TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document} − xLi2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\hbox {Li}_{2}\hbox {O}$$\end{document} − (20+x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(20 + x)$$\end{document}MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} (TLM) where x=0,5,10,15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\,=\,0,\,5,\,10,\,15$$\end{document} and 20 mol% were prepared by the melt-quenching technique and were characterized by X-ray diffraction (XRD), Raman spectroscopy, density, refractive index, and differential scanning calorimetry (DSC). XRD data confirmed the amorphous character of the samples. In addition, the glass transition (Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{g}}$$\end{document}), the onset crystallization (Tx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{x}}$$\end{document}), and the first exothermic peak at the crystallization temperatures (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm{c}}$$\end{document}) were determined from DSC scans. Thermal stability (ΔT=Tx-Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T = T_{\mathrm{x}}-T_{\mathrm{g}}$$\end{document}) increases up to x=15mol%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\,=\,15\,\hbox {mol}\%$$\end{document} followed by a decrease for higher x. Raman results showed that when x increases, the Te–O–Mo linkages form, meaning that Li2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O addition breaks the Te units and Mo-units in the studied glasses. The Te–O–Mo linkages enhance the thermal stability values, increasing the oxygen packing density. The formation of these linkages also alters the refractive index and the electronic polarizability behaviors. In summary, this work shows that the addition of Li2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Li}_2\hbox {O}$$\end{document} in the TeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TeO}_{2}$$\end{document}–MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} system enhances the thermal stability and changes the electronic polarizability behavior, showing the potential of the studied material for technological applications.
引用
收藏
页码:1439 / 1445
页数:6
相关论文
共 50 条
  • [1] Thermo-structural analysis of TeO2-Li2O-MoO3 glasses
    Gomes, Joao L., Jr.
    Goncalves, Anderson
    Somer, Aloisi
    Gunha, Jaqueline V.
    Cruz, Gerson K.
    Novatski, Andressa
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 134 (03) : 1439 - 1445
  • [2] Correlation between nonbridging oxygens and the thermal and optical properties of the TeO2–Li2O–MoO3 glassy system
    João Luis Gomes
    Rubyan Lucas Santos Piazzetta
    Anderson Gonçalves
    Aloisi Somer
    Gerson Kniphoff da Cruz
    Francisco Carlos Serbena
    Andressa Novatski
    Journal of Materials Research, 2015, 30 : 2417 - 2424
  • [3] STRUCTURAL AND TEXTURAL EFFECTS OF TEO2 ADDED TO MOO3
    BART, JCJ
    MARZI, A
    PIGNATARO, F
    CASTELLAN, A
    GIORDANO, N
    JOURNAL OF MATERIALS SCIENCE, 1975, 10 (06) : 1029 - 1036
  • [4] Preparation and Optical Properties of Glasses in the TeO2–MoO3–Pr2O3 System
    M. F. Churbanov
    A. A. Sibirkin
    V. M. Goryaev
    L. V. Buldakova
    Inorganic Materials, 2021, 57 : 634 - 640
  • [5] Thermodynamic properties of (TeO2)n(MoO3)1–n glasses
    E. L. Tikhonova
    D. V. Lyakaev
    I. A. Grishin
    A. M. Kotkova
    A. V. Markin
    Inorganic Materials, 2017, 53 : 1201 - 1208
  • [6] Raman gain coefficient of Er3+ doped TeO2–Li2O–ZnO glasses
    Daniele Toniolo Dias
    Anderson Gonçalves
    Aloisi Somer
    Vitor Santaella Zanuto
    Rosiane Antunes dos Santos
    Jaqueline Valeski Gunha
    Nelson Guilherme Castelli Astrath
    Andressa Novatski
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 16917 - 16921
  • [7] Polaron conduction mechanisms in (B2O3)-(TeO2)-(MoO3)-(Er2O3) glasses
    Amarkumar, M.
    Sankarappa, T.
    Ashwajeet, J. S.
    Sujatha, T.
    INTERNATIONAL CONFERENCE ON APPLIED PHYSICS, POWER AND MATERIAL SCIENCE, 2019, 1172
  • [8] Optical properties of the MoO3 - TeO2 glasses doped with Ni2+-ions
    Zamyatin, O. A.
    Churbanov, M. F.
    Plotnichenko, V. G.
    Zamyatina, E. V.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2018, 480 : 74 - 80
  • [9] Optical properties of glasses in the Li2O–MoO3–P2O5 system
    M. Azmoonfar
    M. H. Hekmat-Shoar
    M. Mirzayi
    H. behzad
    Ionics, 2009, 15 : 513 - 518
  • [10] Thermodynamic properties of (TeO2) n (MoO3)1-n glasses
    Tikhonova, E. L.
    Lyakaev, D. V.
    Grishin, I. A.
    Kotkova, A. M.
    Markin, A. V.
    INORGANIC MATERIALS, 2017, 53 (11) : 1201 - 1208