A numerical scheme for the ground state of rotating spin-1 Bose–Einstein condensates

被引:0
|
作者
Sirilak Sriburadet
Yin-Tzer Shih
B.-W. Jeng
C.-H. Hsueh
C.-S. Chien
机构
[1] National Chung Hsing University,Department of Applied Mathematics
[2] National Taichung University of Education,Department of Mathematics Education
[3] National Taiwan Normal University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of nontrivial solution branches of three-coupled Gross–Pitaevskii equations (CGPEs), which are used as the mathematical model for rotating spin-1 Bose–Einstein condensates (BEC). The Lyapunov–Schmidt reduction is exploited to test the branching of nontrivial solution curves from the trivial one in some neighborhoods of bifurcation points. A multilevel continuation method is proposed for computing the ground state solution of rotating spin-1 BEC. By properly choosing the constraint conditions associated with the components of the parameter variable, the proposed algorithm can effectively compute the ground states of spin-1 87Rb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{87}Rb$$\end{document} and 23Na\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{23}Na$$\end{document} under rapid rotation. Extensive numerical results demonstrate the efficiency of the proposed algorithm. In particular, the affect of the magnetization on the CGPEs is investigated.
引用
收藏
相关论文
共 50 条
  • [41] A Complete Study of the Ground State Phase Diagrams of Spin-1 Bose–Einstein Condensates in a Magnetic Field Via Continuation Methods
    Jen-Hao Chen
    I-Liang Chern
    Weichung Wang
    Journal of Scientific Computing, 2015, 64 : 35 - 54
  • [42] Interacting spin-orbit- coupled spin-1 Bose-Einstein condensates
    Sun, Kuei
    Qu, Chunlei
    Xu, Yong
    Zhang, Yongping
    Zhang, Chuanwei
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [43] On ground state of spinor Bose–Einstein condensates
    Daomin Cao
    I-Liang Chern
    Jun-Cheng Wei
    Nonlinear Differential Equations and Applications NoDEA, 2011, 18 : 427 - 445
  • [44] Three-body spin mixing in spin-1 Bose-Einstein condensates
    Mestrom, P. M. A.
    Li, J-L
    Colussi, V. E.
    Secker, T.
    Kokkelmans, S. J. J. M. F.
    PHYSICAL REVIEW A, 2021, 104 (02)
  • [45] Spin turbulence with small spin magnitude in spin-1 spinor Bose-Einstein condensates
    Fujimoto, Kazuya
    Tsubota, Makoto
    PHYSICAL REVIEW A, 2013, 88 (06)
  • [46] Information Entropy Dynamics in Spin-1 Dipolar Bose-Einstein Condensates
    Zhao, Qiang
    Fan, Genwang
    Wang, Bing
    Hua, Jingming
    Lan, Yu
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (03) : 817 - 823
  • [47] Three-fluid hydrodynamics of spin-1 Bose-Einstein condensates
    Szirmai, Gergely
    Szepfalusy, Peter
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [48] Information Entropy Dynamics in Spin-1 Dipolar Bose-Einstein Condensates
    Qiang Zhao
    Genwang Fan
    Bing Wang
    Jingming Hua
    Yu Lan
    International Journal of Theoretical Physics, 2019, 58 : 817 - 823
  • [49] Composite vortex rings in ferromagnetic spin-1 Bose-Einstein condensates
    Liu, Yong-Kai
    Yang, Shi-Jie
    CHAOS SOLITONS & FRACTALS, 2020, 132
  • [50] Unitary qubit lattice algorithms for spin-1 Bose Einstein condensates (BECs)
    Vahala, L.
    Soe, M.
    Vahala, G.
    Yepez, J.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2019, 174 (1-2): : 46 - 55