A numerical scheme for the ground state of rotating spin-1 Bose–Einstein condensates

被引:0
|
作者
Sirilak Sriburadet
Yin-Tzer Shih
B.-W. Jeng
C.-H. Hsueh
C.-S. Chien
机构
[1] National Chung Hsing University,Department of Applied Mathematics
[2] National Taichung University of Education,Department of Mathematics Education
[3] National Taiwan Normal University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of nontrivial solution branches of three-coupled Gross–Pitaevskii equations (CGPEs), which are used as the mathematical model for rotating spin-1 Bose–Einstein condensates (BEC). The Lyapunov–Schmidt reduction is exploited to test the branching of nontrivial solution curves from the trivial one in some neighborhoods of bifurcation points. A multilevel continuation method is proposed for computing the ground state solution of rotating spin-1 BEC. By properly choosing the constraint conditions associated with the components of the parameter variable, the proposed algorithm can effectively compute the ground states of spin-1 87Rb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{87}Rb$$\end{document} and 23Na\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{23}Na$$\end{document} under rapid rotation. Extensive numerical results demonstrate the efficiency of the proposed algorithm. In particular, the affect of the magnetization on the CGPEs is investigated.
引用
收藏
相关论文
共 50 条
  • [21] ON THE GROUND STATE OF SPIN-1 BOSE-EINSTEIN CONDENSATES WITH AN EXTERNAL IOFFE-PITCHARD MAGNETIC FIELD
    Luo, Wei
    Lu, Zhongxue
    Liu, Zuhan
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (03) : 356 - 369
  • [22] Spin domains in ground-state Bose–Einstein condensates
    J. Stenger
    S. Inouye
    D. M. Stamper-Kurn
    H.-J. Miesner
    A. P. Chikkatur
    W. Ketterle
    Nature, 1998, 396 : 345 - 348
  • [23] Analytical solutions to the spin-1 Bose-Einstein condensates
    Zhang, Zhi-Hai
    Zhang, Cong
    Yang, Shi-Jie
    Feng, Shiping
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (21)
  • [24] Perturbation theory of spin-1 Bose-Einstein condensates
    Ohtsuka, S
    Kurihara, S
    PHYSICAL REVIEW A, 2003, 68 (01):
  • [25] Soliton breathers in spin-1 Bose-Einstein condensates
    Ji Shen-Tong
    Yan Pei-Gen
    Liu Xue-Shen
    CHINESE PHYSICS B, 2014, 23 (03)
  • [26] Hydrodynamic description of spin-1 Bose-Einstein condensates
    Yukawa, Emi
    Ueda, Masahito
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [27] Perturbation theory of spin-1 Bose-Einstein condensates
    Ohtsuka, Shingo
    Kurihara, Susumu
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 68 (01): : 1 - 013601
  • [28] Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow
    Bao, Weizhu
    Lim, Fong Yin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04): : 1925 - 1948
  • [29] Topological defects in rotating spin-orbit-coupled dipolar spin-1 Bose-Einstein condensates
    Su, Ning
    Wang, Qingbo
    Hu, Jinguo
    Su, Xianghua
    Wen, Linghua
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (21)
  • [30] Ground-state patterns and phase diagram of spin-1 Bose-Einstein condensates in uniform magnetic field
    Chern, I-Liang
    Chou, Chiu-Fen
    Shieh, Tien-Tsan
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 388 : 73 - 86