A numerical scheme for the ground state of rotating spin-1 Bose–Einstein condensates

被引:0
|
作者
Sirilak Sriburadet
Yin-Tzer Shih
B.-W. Jeng
C.-H. Hsueh
C.-S. Chien
机构
[1] National Chung Hsing University,Department of Applied Mathematics
[2] National Taichung University of Education,Department of Mathematics Education
[3] National Taiwan Normal University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of nontrivial solution branches of three-coupled Gross–Pitaevskii equations (CGPEs), which are used as the mathematical model for rotating spin-1 Bose–Einstein condensates (BEC). The Lyapunov–Schmidt reduction is exploited to test the branching of nontrivial solution curves from the trivial one in some neighborhoods of bifurcation points. A multilevel continuation method is proposed for computing the ground state solution of rotating spin-1 BEC. By properly choosing the constraint conditions associated with the components of the parameter variable, the proposed algorithm can effectively compute the ground states of spin-1 87Rb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{87}Rb$$\end{document} and 23Na\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{23}Na$$\end{document} under rapid rotation. Extensive numerical results demonstrate the efficiency of the proposed algorithm. In particular, the affect of the magnetization on the CGPEs is investigated.
引用
收藏
相关论文
共 50 条
  • [11] Ground-state phases of a mixture of spin-1 and spin-2 Bose-Einstein condensates
    Irikura, Naoki
    Eto, Yujiro
    Hirano, Takuya
    Saito, Hiroki
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [12] Spin solitons in spin-1 Bose-Einstein condensates
    Meng, Ling-Zheng
    Qin, Yan-Hong
    Zhao, Li-Chen
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 109
  • [13] Soliton breathers in spin-1 Bose–Einstein condensates
    冀慎统
    颜培根
    刘学深
    Chinese Physics B, 2014, (03) : 151 - 156
  • [14] Ground state of spin-2 dipolar rotating Bose-Einstein condensates
    Zhao, Qiang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (10):
  • [15] Ground-state phase transitions in spin-1 Bose-Einstein condensates with spin-orbit coupling
    Zhang, Xin-Feng
    Liu, Yuan-Fen
    Luo, Huan-Bo
    Liu, Bin
    Dou, Fu-Quan
    Li, Yongyao
    Malomed, Boris A.
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [16] Efficient numerical methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations
    Bao, Weizhu
    Chern, I-Liang
    Zhang, Yanzhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 253 : 189 - 208
  • [17] A mass and magnetization conservative and energy-diminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates
    Bao, Weizhu
    Wang, Hanquan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) : 2177 - 2200
  • [18] Rotating spin-1/2 Bose–Einstein condensates in a gradient magnetic field with spin–orbit coupling
    Ji-Guo Wang
    Yue-Qing Li
    Communications in Theoretical Physics, 2020, 72 (09) : 142 - 147
  • [19] Vortex Dynamics in Spin-1 Spin-orbit-coupled Rotating Bose-Einstein Condensates
    Qiang Zhao
    Hongjing Bi
    International Journal of Theoretical Physics, 2021, 60 : 2778 - 2789
  • [20] Vortex Dynamics in Spin-1 Spin-orbit-coupled Rotating Bose-Einstein Condensates
    Zhao, Qiang
    Bi, Hongjing
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2778 - 2789