A numerical scheme for the ground state of rotating spin-1 Bose–Einstein condensates

被引:0
|
作者
Sirilak Sriburadet
Yin-Tzer Shih
B.-W. Jeng
C.-H. Hsueh
C.-S. Chien
机构
[1] National Chung Hsing University,Department of Applied Mathematics
[2] National Taichung University of Education,Department of Mathematics Education
[3] National Taiwan Normal University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of nontrivial solution branches of three-coupled Gross–Pitaevskii equations (CGPEs), which are used as the mathematical model for rotating spin-1 Bose–Einstein condensates (BEC). The Lyapunov–Schmidt reduction is exploited to test the branching of nontrivial solution curves from the trivial one in some neighborhoods of bifurcation points. A multilevel continuation method is proposed for computing the ground state solution of rotating spin-1 BEC. By properly choosing the constraint conditions associated with the components of the parameter variable, the proposed algorithm can effectively compute the ground states of spin-1 87Rb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{87}Rb$$\end{document} and 23Na\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{23}Na$$\end{document} under rapid rotation. Extensive numerical results demonstrate the efficiency of the proposed algorithm. In particular, the affect of the magnetization on the CGPEs is investigated.
引用
收藏
相关论文
共 50 条
  • [1] A numerical scheme for the ground state of rotating spin-1 Bose-Einstein condensates
    Sriburadet, Sirilak
    Shih, Yin-Tzer
    Jeng, B-W
    Hsueh, C-H
    Chien, C-S
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Rotating Dipolar Spin-1 Bose-Einstein Condensates
    Simula, Tapio P.
    Huhtamaki, Jukka A. M.
    Takahashi, Masahiro
    Mizushima, Takeshi
    Machida, Kazushige
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (01)
  • [3] Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform magnetic field
    Lim, Fong Yin
    Bao, Weizhu
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [4] Ground states,solitons and spin textures in spin-1 Bose–Einstein condensates
    ShuWei Song
    Lin Wen
    ChaoFei Liu
    SCGou
    WuMing Liu
    Frontiers of Physics, 2013, 8 (03) : 302 - 318
  • [5] The Numerical Study of the Ground States of Spin-1 Bose-Einstein Condensates with Spin-Orbit-Coupling
    Yuan, Yongjun
    Xu, Zhiguo
    Tang, Qinglin
    Wang, Hanquan
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (03) : 598 - 610
  • [6] Ground states, solitons and spin textures in spin-1 Bose-Einstein condensates
    Shu-Wei Song
    Lin Wen
    Chao-Fei Liu
    S. -C. Gou
    Wu-Ming Liu
    Frontiers of Physics, 2013, 8 : 302 - 318
  • [7] Ground states, solitons and spin textures in spin-1 Bose-Einstein condensates
    Song, Shu-Wei
    Wen, Lin
    Liu, Chao-Fei
    Gou, S-C
    Liu, Wu-Ming
    FRONTIERS OF PHYSICS, 2013, 8 (03) : 302 - 318
  • [8] Ground State Phases of Spin-Orbit Coupled Spin-1 Dipolar Bose-Einstein Condensates
    Qiang Zhao
    Hongjing Bi
    International Journal of Theoretical Physics, 2021, 60 : 2804 - 2811
  • [9] Ground state of spin-1 Bose-Einstein condensates with spin-orbit coupling in a Zeeman field
    Wen, L.
    Sun, Q.
    Wang, H. Q.
    Ji, A. C.
    Liu, W. M.
    PHYSICAL REVIEW A, 2012, 86 (04):
  • [10] Ground State Phases of Spin-Orbit Coupled Spin-1 Dipolar Bose-Einstein Condensates
    Zhao, Qiang
    Bi, Hongjing
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2804 - 2811