Mapping the genomic landscape of CRISPR-Cas9 cleavage

被引:0
|
作者
Cameron P. [1 ]
Fuller C.K. [1 ]
Donohoue P.D. [1 ]
Jones B.N. [1 ,3 ]
Thompson M.S. [1 ]
Carter M.M. [1 ]
Gradia S. [1 ]
Vidal B. [1 ]
Garner E. [1 ]
Slorach E.M. [1 ]
Lau E. [1 ]
Banh L.M. [1 ]
Lied A.M. [1 ]
Edwards L.S. [1 ]
Settle A.H. [1 ]
Capurso D. [1 ]
Llaca V. [2 ]
Deschamps S. [2 ]
Cigan M. [2 ,4 ]
Young J.K. [2 ]
May A.P. [1 ,5 ]
机构
[1] Caribou Biosciences, Berkeley, CA
[2] DuPont Pioneer, Johnston, IA
[3] Omicia, Inc., Oakland, CA
[4] Genus Research, DeForest, WI
[5] Chan Zuckerberg Biohub, San Francisco, CA
关键词
D O I
10.1038/nmeth.4284
中图分类号
学科分类号
摘要
RNA-guided CRISPR-Cas9 endonucleases are widely used for genome engineering, but our understanding of Cas9 specificity remains incomplete. Here, we developed a biochemical method (SITE-Seq), using Cas9 programmed with single-guide RNAs (sgRNAs), to identify the sequence of cut sites within genomic DNA. Cells edited with the same Cas9-sgRNA complexes are then assayed for mutations at each cut site using amplicon sequencing. We used SITE-Seq to examine Cas9 specificity with sgRNAs targeting the human genome. The number of sites identified depended on sgRNA sequence and nuclease concentration. Sites identified at lower concentrations showed a higher propensity for off-target mutations in cells. The list of off-target sites showing activity in cells was influenced by sgRNP delivery, cell type and duration of exposure to the nuclease. Collectively, our results underscore the utility of combining comprehensive biochemical identification of off-target sites with independent cell-based measurements of activity at those sites when assessing nuclease activity and specificity. © 2017 Nature America, Inc. All rights reserved.
引用
收藏
页码:600 / 606
页数:6
相关论文
共 50 条
  • [31] MicroRNAs tame CRISPR-Cas9
    Jouravleva, Karina
    Zamore, Phillip D.
    NATURE CELL BIOLOGY, 2019, 21 (04) : 416 - 417
  • [32] CRISPR-Cas9 wins Nobel
    Strzyz, Paulina
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2020, 21 (12) : 714 - 714
  • [33] The invisible dance of CRISPR-Cas9
    Palermo, Giulia
    Ricci, Clarisse G.
    McCammon, J. Andrew
    PHYSICS TODAY, 2019, 72 (04) : 30 - 36
  • [34] CRISPR-Cas9 in cancer therapeutics
    Randhawa, Shubhchintan
    REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 129 - 163
  • [35] CRISPR-Cas9 Structures and Mechanisms
    Jiang, Fuguo
    Doudna, Jennifer A.
    ANNUAL REVIEW OF BIOPHYSICS, VOL 46, 2017, 46 : 505 - 529
  • [36] Allergan dives into CRISPR-Cas9
    不详
    NATURE BIOTECHNOLOGY, 2017, 35 (04) : 296 - 296
  • [37] CRISPR-Cas9 as a Trojan horse
    Monte, Daniel F. M.
    MOLECULAR THERAPY, 2023, 31 (10) : 2817 - 2818
  • [38] CRISPR-Cas9: Advances and Challenges
    Charpentier, E.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 766 - 766
  • [39] CRISPR-Cas9 for muscle dystrophies
    Ballouhey, Oceane
    Bartoli, Marc
    Levy, Nicolas
    M S-MEDECINE SCIENCES, 2020, 36 (04): : 358 - 366
  • [40] CRISPR-Cas9: Power And Challenges
    Charpentier, Emmanuelle
    FASEB JOURNAL, 2016, 30