CRISPR-Cas9 Structures and Mechanisms

被引:1103
|
作者
Jiang, Fuguo [1 ,2 ]
Doudna, Jennifer A. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
来源
关键词
CRISPR; Cas9; genome engineering; structure; mechanism; off-target; RNA-GUIDED ENDONUCLEASE; GENOME EDITING SPECIFICITY; STAPHYLOCOCCUS-AUREUS CAS9; ALTERED PAM SPECIFICITIES; TARGET DNA RECOGNITION; R-LOOP FORMATION; CRYSTAL-STRUCTURE; NEISSERIA-MENINGITIDIS; SURVEILLANCE COMPLEX; IMMUNE-SYSTEM;
D O I
10.1146/annurev-biophys-062215-010822
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems employ the dual RNA-guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9-DNA interactions, and associated conformational changes. The use of CRISPR-Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)-CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.
引用
收藏
页码:505 / 529
页数:25
相关论文
共 50 条
  • [1] The MyLO CRISPR-Cas9 toolkit: a markerless yeast localization and overexpression CRISPR-Cas9 toolkit
    Bean, Bjorn D. M.
    Whiteway, Malcolm
    Martin, Vincent J. J.
    [J]. G3-GENES GENOMES GENETICS, 2022, 12 (08):
  • [2] CRISPR-Cas9: a world first?
    不详
    [J]. LANCET, 2018, 392 (10163): : 2413 - 2413
  • [3] Putting the brakes on CRISPR-Cas9
    Todorovic, Vesna
    [J]. NATURE METHODS, 2017, 14 (02) : 108 - 108
  • [4] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    [J]. CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [5] Nanoparticles for CRISPR-Cas9 delivery
    Glass, Zachary
    Li, Yamin
    Xu, Qiaobing
    [J]. NATURE BIOMEDICAL ENGINEERING, 2017, 1 (11): : 854 - 855
  • [6] Protein Inhibitors of CRISPR-Cas9
    Bondy-Denomy, Joseph
    [J]. ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 417 - 423
  • [7] Dynamics and mechanisms of CRISPR-Cas9 through the lens of computational methods
    Saha, Aakash
    Arantes, Pablo R.
    Palermo, Giulia
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 75
  • [8] The invisible dance of CRISPR-Cas9
    Palermo, Giulia
    Ricci, Clarisse G.
    McCammon, J. Andrew
    [J]. PHYSICS TODAY, 2019, 72 (04) : 30 - 36
  • [9] CRISPR-Cas9 in cancer therapeutics
    Randhawa, Shubhchintan
    [J]. REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 129 - 163
  • [10] CRISPR-Cas9 wins Nobel
    Strzyz, Paulina
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2020, 21 (12) : 714 - 714