CRISPR-Cas9 Structures and Mechanisms

被引:1103
|
作者
Jiang, Fuguo [1 ,2 ]
Doudna, Jennifer A. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
来源
关键词
CRISPR; Cas9; genome engineering; structure; mechanism; off-target; RNA-GUIDED ENDONUCLEASE; GENOME EDITING SPECIFICITY; STAPHYLOCOCCUS-AUREUS CAS9; ALTERED PAM SPECIFICITIES; TARGET DNA RECOGNITION; R-LOOP FORMATION; CRYSTAL-STRUCTURE; NEISSERIA-MENINGITIDIS; SURVEILLANCE COMPLEX; IMMUNE-SYSTEM;
D O I
10.1146/annurev-biophys-062215-010822
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems employ the dual RNA-guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9-DNA interactions, and associated conformational changes. The use of CRISPR-Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)-CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.
引用
收藏
页码:505 / 529
页数:25
相关论文
共 50 条
  • [41] CRISPR-Cas9 Dissection of Heparan Sulfate
    Weiss, Ryan J.
    Spahn, Philipp N.
    Lewis, Nathan E.
    Esko, Jeffrey D.
    [J]. GLYCOBIOLOGY, 2017, 27 (12) : 1211 - 1211
  • [42] CRISPR-Cas9 Applications in Cardiovascular Disease
    Khouzam, John Paul S.
    Tivakaran, Vijai S.
    [J]. CURRENT PROBLEMS IN CARDIOLOGY, 2021, 46 (03)
  • [43] CRISPR-Cas9 dissection of heparan sulfate
    Weiss, Ryan J.
    Spahn, Philipp N.
    Lewis, Nathan E.
    Esko, Jeffrey D.
    [J]. CANCER RESEARCH, 2017, 77
  • [44] Inhibition of CRISPR-Cas9 with Bacteriophage Proteins
    Rauch, Benjamin J.
    Silvis, Melanie R.
    Hultquist, Judd F.
    Waters, Christopher S.
    McGregor, Michael J.
    Krogan, Nevan J.
    Bondy-Denomy, Joseph
    [J]. CELL, 2017, 168 (1-2) : 150 - +
  • [45] The synchronized catalytic dance of CRISPR-Cas9
    Aakash Saha
    Chinmai Pindi
    Giulia Palermo
    [J]. Nature Catalysis, 2023, 6 : 870 - 872
  • [46] CRISPR-Cas9 Checkpoint Makes the Cut
    不详
    [J]. CHEMICAL ENGINEERING PROGRESS, 2017, 113 (09) : 5 - 5
  • [47] Energy biotechnology in the CRISPR-Cas9 era
    Estrela, Raissa
    Cate, Jamie Harrison Doudna
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2016, 38 : 79 - 84
  • [48] Biomaterials as vectors for the delivery of CRISPR-Cas9
    Eoh, Joon
    Gu, Luo
    [J]. BIOMATERIALS SCIENCE, 2019, 7 (04) : 1240 - 1261
  • [49] CRISPR-Cas9 for Drug Discovery in Oncology
    Guichard, Sylvie M.
    [J]. ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 50: PLATFORM TECHNOLOGIES IN DRUG DISCOVERY AND VALIDATION, 2017, 50 : 61 - 85
  • [50] Establishing the allosteric mechanism in CRISPR-Cas9
    Palermo, Giulia
    [J]. BIOPHYSICAL JOURNAL, 2022, 121 (03) : 145 - 146