Mapping the genomic landscape of CRISPR-Cas9 cleavage

被引:0
|
作者
Cameron P. [1 ]
Fuller C.K. [1 ]
Donohoue P.D. [1 ]
Jones B.N. [1 ,3 ]
Thompson M.S. [1 ]
Carter M.M. [1 ]
Gradia S. [1 ]
Vidal B. [1 ]
Garner E. [1 ]
Slorach E.M. [1 ]
Lau E. [1 ]
Banh L.M. [1 ]
Lied A.M. [1 ]
Edwards L.S. [1 ]
Settle A.H. [1 ]
Capurso D. [1 ]
Llaca V. [2 ]
Deschamps S. [2 ]
Cigan M. [2 ,4 ]
Young J.K. [2 ]
May A.P. [1 ,5 ]
机构
[1] Caribou Biosciences, Berkeley, CA
[2] DuPont Pioneer, Johnston, IA
[3] Omicia, Inc., Oakland, CA
[4] Genus Research, DeForest, WI
[5] Chan Zuckerberg Biohub, San Francisco, CA
关键词
D O I
10.1038/nmeth.4284
中图分类号
学科分类号
摘要
RNA-guided CRISPR-Cas9 endonucleases are widely used for genome engineering, but our understanding of Cas9 specificity remains incomplete. Here, we developed a biochemical method (SITE-Seq), using Cas9 programmed with single-guide RNAs (sgRNAs), to identify the sequence of cut sites within genomic DNA. Cells edited with the same Cas9-sgRNA complexes are then assayed for mutations at each cut site using amplicon sequencing. We used SITE-Seq to examine Cas9 specificity with sgRNAs targeting the human genome. The number of sites identified depended on sgRNA sequence and nuclease concentration. Sites identified at lower concentrations showed a higher propensity for off-target mutations in cells. The list of off-target sites showing activity in cells was influenced by sgRNP delivery, cell type and duration of exposure to the nuclease. Collectively, our results underscore the utility of combining comprehensive biochemical identification of off-target sites with independent cell-based measurements of activity at those sites when assessing nuclease activity and specificity. © 2017 Nature America, Inc. All rights reserved.
引用
收藏
页码:600 / 606
页数:6
相关论文
共 50 条
  • [21] BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models
    Zarate, Oscar A.
    Yang, Yiben
    Wang, Xiaozhong
    Wang, Ji-Ping
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [22] Mapping the Boundary of DNA Unwinding in CRISPR-Cas9 Target Recognition
    Liu, Yukang
    Li, Yue
    Tangprasertchai, Narin
    Qin, Peter Z.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 224A - 224A
  • [23] Two-Metal Ion Mechanism of DNA Cleavage in CRISPR-Cas9
    Palermo, Giulia
    Casalino, Lorenzo
    Jinek, Martin
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 64A - 64A
  • [24] Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes
    Ma, Enbo
    Harrington, Lucas B.
    O'Connell, Mitchell R.
    Zhou, Kaihong
    Doudna, Jennifer A.
    MOLECULAR CELL, 2015, 60 (03) : 398 - 407
  • [25] BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models
    Oscar A. Zarate
    Yiben Yang
    Xiaozhong Wang
    Ji-Ping Wang
    BMC Bioinformatics, 23
  • [26] Putting the brakes on CRISPR-Cas9
    Todorovic, Vesna
    NATURE METHODS, 2017, 14 (02) : 108 - 108
  • [27] CRISPR-Cas9: a world first?
    不详
    LANCET, 2018, 392 (10163): : 2413 - 2413
  • [28] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [29] Protein Inhibitors of CRISPR-Cas9
    Bondy-Denomy, Joseph
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 417 - 423
  • [30] Nanoparticles for CRISPR-Cas9 delivery
    Glass, Zachary
    Li, Yamin
    Xu, Qiaobing
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (11): : 854 - 855