Bivariate elliptical regression for modeling interval-valued data

被引:0
|
作者
Wagner J. F. Silva
Renata M. C. R. Souza
F. J. A. Cysneiros
机构
[1] Universidade Federal de Pernambuco,
来源
Computational Statistics | 2022年 / 37卷
关键词
Interval data; Bivariate regression; Symbolic data analysis elliptical distribution;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a special case of a multivariate regression model with restriction for interval-valued data in the symbolic data analysis framework. This model is less sensitive in the presence of interval outliers since it considers light-heavy tails distributions. Intervals are obtained from classic data according to a fusion process and each interval can be represented by its center and range data or lower and upper bound values. The correlation between the center and range variables or lower and upper bound variables is a fundamental component for constructing the model. Therefore, a study that provides a suitable choice of the representation for intervals in bivariate models is proposed. Simulation studies in the Monte Carlo framework regarding different scenarios of interval data set with and without outliers are carried out to validate the proposed model. An application with real-life interval medical dataset is also performed.
引用
收藏
页码:2003 / 2028
页数:25
相关论文
共 50 条
  • [31] Bivariate Generalized Linear Model for Interval-Valued Variables
    Lima Neto, Eufrasio de A.
    Cordeiro, Gauss M.
    de Carvalho, Francisco A. T.
    dos Anjos, Ulisses U.
    da Costa, Abner G.
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 919 - +
  • [32] LINEAR REGRESSION OF INTERVAL-VALUED DATA BASED ON COMPLETE INFORMATION IN HYPERCUBES
    Huiwen WANG
    Rong GUAN
    Junjie WU
    [J]. Journal of Systems Science and Systems Engineering, 2012, 21 (04) : 422 - 442
  • [33] Linear regression of interval-valued data based on complete information in hypercubes
    Huiwen Wang
    Rong Guan
    Junjie Wu
    [J]. Journal of Systems Science and Systems Engineering, 2012, 21 : 422 - 442
  • [34] Fitting a Least Absolute Deviation Regression Model on Interval-Valued Data
    Santiago Maia, Andre Luis
    de Carvalho, Francisco de A. T.
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2008, PROCEEDINGS, 2008, 5249 : 207 - 216
  • [35] Applying constrained linear regression models to predict interval-valued data
    Neto, EDL
    de Carvalho, FDT
    Freire, ES
    [J]. KI2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3698 : 92 - 106
  • [36] A new method to fit a linear regression model for interval-valued data
    de Carvalho, FD
    Neto, ED
    Tenorio, CP
    [J]. KI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3238 : 295 - 306
  • [37] Linear regression of interval-valued data based on complete information in hypercubes
    Wang, Huiwen
    Guan, Rong
    Wu, Junjie
    [J]. JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING, 2012, 21 (04) : 422 - 442
  • [38] Testing of mean interval for interval-valued data
    Roy, Anuradha
    Klein, Daniel
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (20) : 5028 - 5044
  • [39] A regularized MM estimate for interval-valued regression
    Kong, Lingtao
    Gao, Xianwei
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [40] Partition of Interval-Valued Observations Using Regression
    Fei Liu
    L. Billard
    [J]. Journal of Classification, 2022, 39 : 55 - 77