LINEAR REGRESSION OF INTERVAL-VALUED DATA BASED ON COMPLETE INFORMATION IN HYPERCUBES

被引:0
|
作者
Huiwen WANG [1 ]
Rong GUAN [1 ]
Junjie WU [1 ]
机构
[1] Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations,School of Economics and Management,Beihang University
基金
中国国家自然科学基金;
关键词
Interval-valued data; linear regression; complete information method(CIM); hypercubes;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recent years have witnessed an increasing interest in interval-valued data analysis.As one of the core topics,linear regression attracts particular attention.It attempts to model the relationship between one or more explanatory variables and a response variable by fitting a linear equation to the interval-valued observations.Despite of the well-known methods such as CM,CRM and CCRM proposed in the literature,further study is still needed to build a regression model that can capture the complete information in interval-valued observations.To this end,in this paper,we propose the novel Complete Information Method(CIM) for linear regression modeling.By dividing hypercubes into informative grid data,CIM defines the inner product of interval-valued variables,and transforms the regression modeling into the computation of some inner products.Experiments on both the synthetic and real-world data sets demonstrate the merits of CIM in modeling interval-valued data,and avoiding the mathematical incoherence introduced by CM and CRM.
引用
收藏
页码:422 / 442
页数:21
相关论文
共 50 条
  • [1] Linear regression of interval-valued data based on complete information in hypercubes
    Huiwen Wang
    Rong Guan
    Junjie Wu
    [J]. Journal of Systems Science and Systems Engineering, 2012, 21 : 422 - 442
  • [2] Linear regression of interval-valued data based on complete information in hypercubes
    Wang, Huiwen
    Guan, Rong
    Wu, Junjie
    [J]. JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING, 2012, 21 (04) : 422 - 442
  • [3] Linear regression with interval-valued data
    Sun, Yan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [4] Compositional Linear Regression on Interval-valued Data
    Pekaslan, Direnc
    Wagner, Christian
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [5] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [6] Linear regression analysis for interval-valued functional data
    Nasirzadeh, Roya
    Nasirzadeh, Fariba
    Mohammadi, Zohreh
    [J]. STAT, 2021, 10 (01):
  • [7] Local linear regression analysis for interval-valued data
    Jang, Jungteak
    Kang, Kee-Hoon
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (03) : 365 - 376
  • [8] Nonparametric regression for interval-valued data based on local linear smoothing approach
    Kong, Lingtao
    Song, Xiangjun
    Wang, Xiaomin
    [J]. NEUROCOMPUTING, 2022, 501 : 834 - 843
  • [9] Constrained linear regression models for interval-valued data with dependence
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    Coelho Neto, Jose F.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 258 - 263
  • [10] Interval-valued data regression using partial linear model
    Wei, Yuan
    Wang, Shanshan
    Wang, Huiwen
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (16) : 3175 - 3194