Bivariate elliptical regression for modeling interval-valued data

被引:0
|
作者
Wagner J. F. Silva
Renata M. C. R. Souza
F. J. A. Cysneiros
机构
[1] Universidade Federal de Pernambuco,
来源
Computational Statistics | 2022年 / 37卷
关键词
Interval data; Bivariate regression; Symbolic data analysis elliptical distribution;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a special case of a multivariate regression model with restriction for interval-valued data in the symbolic data analysis framework. This model is less sensitive in the presence of interval outliers since it considers light-heavy tails distributions. Intervals are obtained from classic data according to a fusion process and each interval can be represented by its center and range data or lower and upper bound values. The correlation between the center and range variables or lower and upper bound variables is a fundamental component for constructing the model. Therefore, a study that provides a suitable choice of the representation for intervals in bivariate models is proposed. Simulation studies in the Monte Carlo framework regarding different scenarios of interval data set with and without outliers are carried out to validate the proposed model. An application with real-life interval medical dataset is also performed.
引用
收藏
页码:2003 / 2028
页数:25
相关论文
共 50 条
  • [1] Bivariate elliptical regression for modeling interval-valued data
    Silva, Wagner J. F.
    Souza, Renata M. C. R.
    Cysneiros, F. J. A.
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (04) : 2003 - 2028
  • [2] Bivariate symbolic regression models for interval-valued variables
    Lima Neto, Eufrasio de A.
    Cordeiro, Gauss M.
    de Carvalho, Francisco de A. T.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1727 - 1744
  • [3] A bivariate Bayesian method for interval-valued regression models
    Xu, Min
    Qin, Zhongfeng
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 235
  • [4] Dependencies in bivariate interval-valued symbolic data
    Billard, L
    [J]. CLASSIFICATION, CLUSTERING, AND DATA MINING APPLICATIONS, 2004, : 319 - 324
  • [5] Regression analysis for interval-valued data
    Billard, L
    Diday, E
    [J]. DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS, 2000, : 369 - 374
  • [6] Linear regression with interval-valued data
    Sun, Yan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [7] Constrained Regression for Interval-Valued Data
    Gonzalez-Rivera, Gloria
    Lin, Wei
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) : 473 - 490
  • [8] Resistant Regression for Interval-Valued Data
    Renan, Jobson
    Silva, Jornandes Dias
    Galdino, Sergio
    [J]. 2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 277 - 281
  • [9] Quantile Regression of Interval-Valued Data
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Soares, Yanne M. G.
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2586 - 2591
  • [10] Compositional Linear Regression on Interval-valued Data
    Pekaslan, Direnc
    Wagner, Christian
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,