Bivariate symbolic regression models for interval-valued variables

被引:45
|
作者
Lima Neto, Eufrasio de A. [1 ]
Cordeiro, Gauss M. [2 ]
de Carvalho, Francisco de A. T. [3 ]
机构
[1] Univ Fed Paraiba, Dept Estat, Ctr Ciencias Exatas & Nat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Rural Pernambuco, Dept Estat & Informat, BR-52171900 Recife, PE, Brazil
[3] Univ Fed Pernambuco, Ctr Informat, BR-50740540 Recife, PE, Brazil
关键词
bivariate symbolic regression method; generalized linear model; deviance; interval-valued data; residual analysis; symbolic data analysis;
D O I
10.1080/00949655.2010.500470
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Interval-valued variables have become very common in data analysis. Up until now, symbolic regression mostly approaches this type of data from an optimization point of view, considering neither the probabilistic aspects of the models nor the nonlinear relationships between the interval response and the interval predictors. In this article, we formulate interval-valued variables as bivariate random vectors and introduce the bivariate symbolic regression model based on the generalized linear models theory which provides much-needed exibility in practice. Important inferential aspects are investigated. Applications to synthetic and real data illustrate the usefulness of the proposed approach.
引用
收藏
页码:1727 / 1744
页数:18
相关论文
共 50 条
  • [1] Regression Models for Symbolic Interval-Valued Variables
    Chacon, Jose Emmanuel
    Rodriguez, Oldemar
    [J]. ENTROPY, 2021, 23 (04)
  • [2] CONSTRUCTION OF REGRESSION TREES ON INTERVAL-VALUED SYMBOLIC VARIABLES
    Shimokawa, Asanao
    Kawasaki, Yohei
    Miyaoka, Etsuo
    [J]. JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS, 2014, 27 (01): : 61 - 79
  • [3] Nonlinear Regression Model to Symbolic Interval-valued Variables
    Lima Neto, Eufrasio de Andrade
    Tenorio de Carvalho, Francisco de Assis
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 1246 - +
  • [4] A bivariate Bayesian method for interval-valued regression models
    Xu, Min
    Qin, Zhongfeng
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 235
  • [5] Dependencies in bivariate interval-valued symbolic data
    Billard, L
    [J]. CLASSIFICATION, CLUSTERING, AND DATA MINING APPLICATIONS, 2004, : 319 - 324
  • [6] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [7] Constrained linear regression models for symbolic interval-valued variablesk
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 333 - 347
  • [8] Bivariate Generalized Linear Model for Interval-Valued Variables
    Lima Neto, Eufrasio de A.
    Cordeiro, Gauss M.
    de Carvalho, Francisco A. T.
    dos Anjos, Ulisses U.
    da Costa, Abner G.
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 919 - +
  • [9] Bivariate elliptical regression for modeling interval-valued data
    Wagner J. F. Silva
    Renata M. C. R. Souza
    F. J. A. Cysneiros
    [J]. Computational Statistics, 2022, 37 : 2003 - 2028
  • [10] Bivariate elliptical regression for modeling interval-valued data
    Silva, Wagner J. F.
    Souza, Renata M. C. R.
    Cysneiros, F. J. A.
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (04) : 2003 - 2028