On the Andrews–Yee Identities Associated with Mock Theta Functions

被引:1
|
作者
Jin Wang
Xinrong Ma
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Soochow University,Department of Mathematics
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Mock theta functions; Bailey pair; The WZ method; Transformation formulas; Primary 33D15; Secondary 05A30; 11P81;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we generalize the Andrews–Yee identities associated with the third-order mock theta functions ω(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (q)$$\end{document} and ν(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (q)$$\end{document}. We obtain some q-series transformation formulas, one of which gives a new Bailey pair. Using the classical Bailey lemma, we derive a product formula for two 2ϕ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_2\phi _1$$\end{document} series. We also establish recurrence relations and transformation formulas for two finite sums arising from the Andrews–Yee identities.
引用
收藏
页码:1105 / 1122
页数:17
相关论文
共 50 条
  • [41] Families of multisums as mock theta functions
    Gu, Nancy S. S.
    Liu, Jing
    ADVANCES IN APPLIED MATHEMATICS, 2016, 79 : 98 - 124
  • [42] Superconformal algebras and mock theta functions
    Eguchi, Tohru
    Hikami, Kazuhiro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (30)
  • [43] Second order mock theta functions
    McIntosh, Richard J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (02): : 284 - 290
  • [44] On recursions for coefficients of mock theta functions
    Chan S.H.
    Mao R.
    Osburn R.
    Research in Number Theory, 1 (1)
  • [45] Ramanujan's mock theta functions
    Griffin, Michael
    Ono, Ken
    Rolen, Larry
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (15) : 5765 - 5768
  • [46] Some new mock theta functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    ADVANCES IN APPLIED MATHEMATICS, 2021, 131
  • [47] The Bailey chain and mock theta functions
    Lovejoy, Jeremy
    Osburn, Robert
    ADVANCES IN MATHEMATICS, 2013, 238 : 442 - 458
  • [48] ON SOME NEW MOCK THETA FUNCTIONS
    Gu, Nancy S. S.
    Hao, Li-Jun
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 107 (01) : 53 - 66
  • [49] Sixth order mock theta functions
    Berndt, Bruce C.
    Chan, Song Heng
    ADVANCES IN MATHEMATICS, 2007, 216 (02) : 771 - 786
  • [50] MOCK THETA FUNCTIONS AND RELATED COMBINATORICS
    Ballantine, Cristina
    Burson, Hannah
    Folsom, Amanda
    Hsu, Chi-Yun
    Negrini, Isabella
    Wen, Boya
    arXiv, 2022,