On the Andrews–Yee Identities Associated with Mock Theta Functions

被引:1
|
作者
Jin Wang
Xinrong Ma
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Soochow University,Department of Mathematics
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Mock theta functions; Bailey pair; The WZ method; Transformation formulas; Primary 33D15; Secondary 05A30; 11P81;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we generalize the Andrews–Yee identities associated with the third-order mock theta functions ω(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (q)$$\end{document} and ν(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (q)$$\end{document}. We obtain some q-series transformation formulas, one of which gives a new Bailey pair. Using the classical Bailey lemma, we derive a product formula for two 2ϕ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_2\phi _1$$\end{document} series. We also establish recurrence relations and transformation formulas for two finite sums arising from the Andrews–Yee identities.
引用
收藏
页码:1105 / 1122
页数:17
相关论文
共 50 条
  • [21] Four identities related to third-order mock theta functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Su, Chen-Yang
    RAMANUJAN JOURNAL, 2021, 55 (03): : 929 - 941
  • [22] Identities for Ramanujan's sixth-order mock theta functions
    Choi, YS
    QUARTERLY JOURNAL OF MATHEMATICS, 2002, 53 : 147 - 159
  • [23] Partitions associated with two fifth-order mock theta functions and Beck-type identities
    Li, Runqiao
    Wang, Andrew Y. Z.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (04) : 841 - 855
  • [24] Some identities of certain basic hypergeometric series and their applications to mock theta functions
    Zhang, Zhizheng
    Song, Hanfei
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04): : 1214 - 1225
  • [25] Some identities of certain basic hypergeometric series and their applications to mock theta functions
    Zhizheng Zhang
    Hanfei Song
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 1214 - 1225
  • [26] The Bailey transform and Hecke-Rogers identities for the universal mock theta functions
    Ji, Kathy Q.
    Zhao, Alice X. H.
    ADVANCES IN APPLIED MATHEMATICS, 2015, 65 : 65 - 86
  • [27] PARTITION IDENTITIES FOR RAMANUJAN'S THIRD-ORDER MOCK THETA FUNCTIONS
    Chen, William Y. C.
    Ji, Kathy Q.
    Liu, Eric H.
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (02): : 353 - 365
  • [28] Universal mock theta functions and two-variable Hecke–Rogers identities
    F. G. Garvan
    The Ramanujan Journal, 2015, 36 : 267 - 296
  • [29] The mock theta functions (2)
    Watson, GN
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1937, 42 : 274 - 304
  • [30] Representations of mock theta functions
    Chen, Dandan
    Wang, Liuquan
    ADVANCES IN MATHEMATICS, 2020, 365