On the Andrews–Yee Identities Associated with Mock Theta Functions

被引:1
|
作者
Jin Wang
Xinrong Ma
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Soochow University,Department of Mathematics
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Mock theta functions; Bailey pair; The WZ method; Transformation formulas; Primary 33D15; Secondary 05A30; 11P81;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we generalize the Andrews–Yee identities associated with the third-order mock theta functions ω(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (q)$$\end{document} and ν(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (q)$$\end{document}. We obtain some q-series transformation formulas, one of which gives a new Bailey pair. Using the classical Bailey lemma, we derive a product formula for two 2ϕ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_2\phi _1$$\end{document} series. We also establish recurrence relations and transformation formulas for two finite sums arising from the Andrews–Yee identities.
引用
收藏
页码:1105 / 1122
页数:17
相关论文
共 50 条
  • [31] Generalizations of mock theta functions
    Cui, Su-Ping
    Gu, Nancy S. S.
    Su, Chen-Yang
    Xie, Matthew H. Y.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (09) : 2395 - 2413
  • [32] MOCK MAASS THETA FUNCTIONS
    Zwegers, Sander P.
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (03): : 753 - 770
  • [33] q-Orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions
    George E. Andrews
    Proceedings of the Steklov Institute of Mathematics, 2012, 276 : 21 - 32
  • [34] q-Orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions
    Andrews, George E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 276 (01) : 21 - 32
  • [35] Generating functions of the Hurwitz class numbers associated with certain mock theta functions
    Chen, Dandan
    Chen, Rong
    RAMANUJAN JOURNAL, 2024, 64 (02): : 371 - 400
  • [36] Generating functions of the Hurwitz class numbers associated with certain mock theta functions
    Dandan Chen
    Rong Chen
    The Ramanujan Journal, 2024, 64 : 371 - 400
  • [37] Universal mock theta functions and two-variable Hecke-Rogers identities
    Garvan, F. G.
    RAMANUJAN JOURNAL, 2015, 36 (1-2): : 267 - 296
  • [38] Optimal mock Jacobi theta functions
    Cheng, Miranda C. N.
    Duncan, John F. R.
    ADVANCES IN MATHEMATICS, 2020, 372
  • [39] 100 Years of mock theta functions
    Andrews, George E.
    RAMANUJAN JOURNAL, 2025, 66 (01): : 1 - 14
  • [40] A CHARACTERIZATION OF MODIFIED MOCK THETA FUNCTIONS
    VICTOR G. KAC
    MINORU WAKIMOTO
    Transformation Groups, 2017, 22 : 979 - 1004