Darwinian standard model of physics obtains general relativity

被引:0
|
作者
Nicolas Lori
机构
[1] University of Minho,Centre Algoritmi
来源
关键词
Darwinian evolution; Maximum information processing; Quantum field theory; Black hole; No-hiding theorem;
D O I
暂无
中图分类号
学科分类号
摘要
A Darwinian perspective of the standard model of physics (SMP) quantum fields (QFs) is proposed, called the physics-cell (PC) approach. Because Darwinian evolution is not deterministic, the PC approach allows for the violation of the charge-parity-time symmetry. In the PC approach, the SMP laws are contained in the PCs which receive and emit QFs through the PCs’ outer surface which is necessarily constrained by Bekenstein’s surface-information limit. The establishment of gauge invariance-compatible communication protocol-agreements between the PCs obtains an average correlation of QFs that is equivalent to an asymmetric metric tensor with the symmetric component being equivalent to general relativity and the anti-symmetric component being very small but still large enough to allow for enough ex-nihilo mass-creation to explain dark matter. Based on experimental data, the PC minimum-size is 1.5·10-31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5\cdot 10^{-31}$$\end{document} m which is similar to the scale at which the grand unified theory force convergence occurs. Plus, the cosmological constant energy density is equal to the energy density of the discreteness-correction QF alterations that constitute the dark energy and are caused by the finiteness of the PC time-step which equals 5.0·10-40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\cdot 10^{-40}$$\end{document} s, hence obtaining a PC maximum information processing rate of 6.6·1047\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6.6\cdot 10^{47}$$\end{document} qubit/s. Moreover, the PC approach obtains that the minimum mass for black holes is 2.1·109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.1 \cdot 10^{9}$$\end{document} larger than the maximum mass for which the no-hiding theorem can apply and that the maximum capacity for quantum computers is about 29.0·1012\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$29.0 \cdot 10^{12}$$\end{document} qubit.
引用
收藏
相关论文
共 50 条
  • [41] INDIVIDUAL RELATIVITY - MODEL OF MAN IN MODERN PHYSICS
    CLAXTON, G
    BULLETIN OF THE BRITISH PSYCHOLOGICAL SOCIETY, 1979, 32 (NOV): : 415 - 418
  • [42] Testing General Relativity and gravitational physics using the LARES satellite
    Ciufolini, Ignazio
    Paolozzi, Antonio
    Pavlis, Erricos
    Ries, John
    Gurzadyan, Vahe
    Koenig, Rolf
    Matzner, Richard
    Penrose, Roger
    Sindoni, Giampiero
    EUROPEAN PHYSICAL JOURNAL PLUS, 2012, 127 (11):
  • [43] A model-independent precision test of General Relativity using LISA bright standard sirens
    Afroz, Samsuzzaman
    Mukherjee, Suvodip
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (10):
  • [44] Probing General Relativity and New Physics with Lunar Laser Ranging
    Dell'Agnello, S.
    Maiello, M.
    Currie, D. G.
    Boni, A.
    Berardi, S.
    Cantone, C.
    Delle Monache, G. O.
    Intaglietta, N.
    Lops, C.
    Garattini, M.
    Martini, M.
    Patrizi, G.
    Porcelli, L.
    Tibuzzi, M.
    Vittori, R.
    Bianco, G.
    Coradini, A.
    Dionisio, C.
    March, R.
    Bellettini, G.
    Tauraso, R.
    Chandler, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 692 : 275 - 279
  • [45] Gravitational waves and black holes - An introduction to the physics of general relativity
    vanHolten, JW
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1997, 45 (06): : 439 - 516
  • [46] Space and Time in contemporary Physics, Introduction to general Relativity Theory
    Henning, Hans
    ZEITSCHRIFT FUR PSYCHOLOGIE UND PHYSIOLOGIE DER SINNESORGANE, 1919, 81 : 103 - 103
  • [47] General relativity - Shape-shifter beats the laws of physics
    Hogan, J
    NEW SCIENTIST, 2003, 177 (2385) : 24 - 24
  • [48] Testing General Relativity and gravitational physics using the LARES satellite
    Ignazio Ciufolini
    Antonio Paolozzi
    Erricos Pavlis
    John Ries
    Vahe Gurzadyan
    Rolf Koenig
    Richard Matzner
    Roger Penrose
    Giampiero Sindoni
    The European Physical Journal Plus, 127
  • [49] NEW EMBEDDING MODEL OF GENERAL RELATIVITY
    DESER, S
    PIRANI, FAE
    ROBINSON, DC
    PHYSICAL REVIEW D, 1976, 14 (12): : 3301 - 3303
  • [50] A NONINTEGRABLE MODEL IN GENERAL-RELATIVITY
    MOECKEL, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (02) : 415 - 430