Darwinian standard model of physics obtains general relativity

被引:0
|
作者
Nicolas Lori
机构
[1] University of Minho,Centre Algoritmi
来源
关键词
Darwinian evolution; Maximum information processing; Quantum field theory; Black hole; No-hiding theorem;
D O I
暂无
中图分类号
学科分类号
摘要
A Darwinian perspective of the standard model of physics (SMP) quantum fields (QFs) is proposed, called the physics-cell (PC) approach. Because Darwinian evolution is not deterministic, the PC approach allows for the violation of the charge-parity-time symmetry. In the PC approach, the SMP laws are contained in the PCs which receive and emit QFs through the PCs’ outer surface which is necessarily constrained by Bekenstein’s surface-information limit. The establishment of gauge invariance-compatible communication protocol-agreements between the PCs obtains an average correlation of QFs that is equivalent to an asymmetric metric tensor with the symmetric component being equivalent to general relativity and the anti-symmetric component being very small but still large enough to allow for enough ex-nihilo mass-creation to explain dark matter. Based on experimental data, the PC minimum-size is 1.5·10-31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5\cdot 10^{-31}$$\end{document} m which is similar to the scale at which the grand unified theory force convergence occurs. Plus, the cosmological constant energy density is equal to the energy density of the discreteness-correction QF alterations that constitute the dark energy and are caused by the finiteness of the PC time-step which equals 5.0·10-40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\cdot 10^{-40}$$\end{document} s, hence obtaining a PC maximum information processing rate of 6.6·1047\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6.6\cdot 10^{47}$$\end{document} qubit/s. Moreover, the PC approach obtains that the minimum mass for black holes is 2.1·109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.1 \cdot 10^{9}$$\end{document} larger than the maximum mass for which the no-hiding theorem can apply and that the maximum capacity for quantum computers is about 29.0·1012\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$29.0 \cdot 10^{12}$$\end{document} qubit.
引用
收藏
相关论文
共 50 条
  • [21] Physics: One hundred years of general relativity
    Pedro Ferreira
    Nature, 2015, 520 : 621 - 622
  • [22] General Relativity and the Standard Model: Why evidence for one does not disconfirm the other
    Jones, Nicholaos
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2009, 40 (02): : 124 - 132
  • [23] The LARES 2 satellite, general relativity and fundamental physics
    Ciufolini, Ignazio
    Paolozzi, Antonio
    Pavlis, Erricos C.
    Ries, John C.
    Matzner, Richard
    Paris, Claudio
    Ortore, Emiliano
    Gurzadyan, Vahe
    Penrose, Roger
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (01):
  • [24] PHYSICS OF STRONG FIELDS IN QUANTUM ELECTRODYNAMICS AND GENERAL RELATIVITY
    MULLER, B
    GREINER, W
    ACTA PHYSICA AUSTRIACA, 1977, : 153 - 384
  • [25] An integrable model in general relativity
    Vilasi, G
    EUROPEAN PHYSICAL JOURNAL B, 2002, 29 (02): : 207 - 210
  • [26] ELEMENTARY PARTICLE PHYSICS FROM GENERAL-RELATIVITY
    SACHS, M
    FOUNDATIONS OF PHYSICS, 1981, 11 (3-4) : 329 - 354
  • [27] The LARES 2 satellite, general relativity and fundamental physics
    Ignazio Ciufolini
    Antonio Paolozzi
    Erricos C. Pavlis
    John C. Ries
    Richard Matzner
    Claudio Paris
    Emiliano Ortore
    Vahe Gurzadyan
    Roger Penrose
    The European Physical Journal C, 83
  • [28] An embedding for general relativity and its implications for new physics
    Mashhoon, Bahram
    Wesson, Paul
    GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (09) : 1403 - 1412
  • [29] VISCOELASTIC MODEL IN GENERAL RELATIVITY
    MAUGIN, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (22): : 1482 - &
  • [30] Fundamental Physics and General Relativity with the LARES and LAGEOS satellites
    Ciufolini, Ignazio
    Paolozzi, Antonio
    Koenig, Rolf
    Pavlis, Erricos C.
    Ries, John
    Matzner, Richard
    Gurzadyan, Vahe
    Penrose, Roger
    Sindoni, Giampiero
    Paris, Claudio
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2013, 243 : 180 - 193