Probing General Relativity and New Physics with Lunar Laser Ranging

被引:6
|
作者
Dell'Agnello, S. [1 ]
Maiello, M. [1 ]
Currie, D. G. [2 ]
Boni, A. [1 ]
Berardi, S. [1 ]
Cantone, C. [1 ]
Delle Monache, G. O. [1 ]
Intaglietta, N. [1 ]
Lops, C. [1 ]
Garattini, M. [1 ]
Martini, M. [1 ]
Patrizi, G. [1 ]
Porcelli, L. [1 ]
Tibuzzi, M. [1 ]
Vittori, R. [3 ,4 ]
Bianco, G. [11 ]
Coradini, A. [5 ]
Dionisio, C. [10 ]
March, R. [6 ,7 ]
Bellettini, G. [8 ,9 ]
Tauraso, R. [8 ,9 ]
Chandler, J. [12 ]
机构
[1] Ist Nazl Fis Nucl, LNF, Rome, Italy
[2] Univ Maryland UMD, College Pk, MD USA
[3] AMI, Rome, Italy
[4] ASI, Rome, Italy
[5] INAF Ist Fis Spazio Interplanetario IFSI, I-00133 Rome, Italy
[6] INFN LNF, I-00161 Rome, Italy
[7] CNR Ist Applicazioni Calcolo IAC, I-00161 Rome, Italy
[8] Univ Roma Tor Vergata, Dept Math, I-00133 Rome, Italy
[9] INFN LNF, I-00133 Rome, Italy
[10] Rheinmetall Italia SpA, I-00131 Rome, Italy
[11] ASI Ctr Geodesia Spaziale, Matera, Italy
[12] Harvard Smithsonian Ctr Astrophys, Cambridge, MA USA
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2012年 / 692卷
关键词
Probing General Relativity; Laser ranging;
D O I
10.1016/j.nima.2012.01.002
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Over the past 40 years, Lunar Laser Ranging (LLR, developed by the Univ. of Maryland (PI) and INFN-LNF (Co-PI)) to the Apollo Cube Corner Retroreflector (CCR) arrays have supplied almost all the significant tests of General Relativity (Currie et al., 2009 [12]). LLR can evaluate the PPN (Post Newtonian Parameters), addressing this way both the possible changes in the gravitational constant and the self-energy properties of the gravitational field. In addition, the LLR has provided significant information on the composition and origin of the Moon. This is the only Apollo experiment that is still in operation. Initially the Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Over the decades, the ranging capabilities of the ground stations have improved by more than two orders of magnitude. Now, because of the lunar librations, the existing Apollo retroreflector arrays contribute a significant fraction of the limiting errors in the range measurements. We built a new experimental apparatus (the 'Satellite/Lunar Laser Ranging Characterization Facility', SCF) and created a new test procedure (the SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of cube corner laser retroreflectors in space for industrial and scientific applications (Dell'Agnello et al., 2011 [13]). Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the SLR retroreflector payload under thermal conditions produced with a close-match solar simulator. The apparatus includes infrared cameras for non-invasive thermometry, thermal control and real-time movement of the payload to experimentally simulate satellite orientation on orbit with respect to both solar illumination and laser interrogation beams. These unique capabilities provide experimental validation of the space segment for SLR and Lunar Laser Ranging (LLR). The primary goal of these innovative tools is to provide critical design and diagnostic capabilities for Satellite Laser Ranging (SLR) to Galileo and other GNSS (Global Navigation Satellite System) constellations. Implementation of new retroreflector designs being studied will help to improve GNSS orbits, which will then increase the accuracy, stability, and distribution of the International Terrestrial Reference Frame (ITRF)14], to provide better definition of the geocenter (origin) and the scale (length unit). The SCF is also actively used to develop, validate and optimize the second generation LLR arrays for precision gravity and lunar science measurements to be performed with robotic missions of the International Lunar Network in which NASA and ASI participate (ILN). The capability will allow us to optimize the design of GNSS laser retroreflector payloads to maximize ranging efficiency, to improve signal-to-noise conditions in daylight and to provide pre-launch validation of retroreflector performance under laboratory-simulated space conditions. For the MAGIA lunar orbiter Phase A study funded by ASI (Dell'Agnello et al., 2010 1141), we studied fundamental physics and absolute positioning metrology experiments, to improve test of the gravitational redshift in the Earth-Moon system predicted by General Relativity and a precursor test of our second generation LLR payload. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:275 / 279
页数:5
相关论文
共 50 条
  • [1] Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science
    Mueller, Juergen
    Murphy, Thomas W., Jr.
    Schreiber, Ulrich
    Shelus, Peter J.
    Torre, Jean-Marie
    Williams, James G.
    Boggs, Dale H.
    Bouquillon, Sebastien
    Bourgoin, Adrien
    Hofmann, Franz
    JOURNAL OF GEODESY, 2019, 93 (11) : 2195 - 2210
  • [2] Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science
    Jürgen Müller
    Thomas W. Murphy
    Ulrich Schreiber
    Peter J. Shelus
    Jean-Marie Torre
    James G. Williams
    Dale H. Boggs
    Sebastien Bouquillon
    Adrien Bourgoin
    Franz Hofmann
    Journal of Geodesy, 2019, 93 : 2195 - 2210
  • [3] Lunar laser ranging contributions to relativity and geodesy
    Mueller, Juergen
    Williams, James G.
    Turyshev, Slava G.
    LASERS, CLOCKS AND DRAG-FREE CONTROL: EXPLORATION OF RELATIVISTIC GRAVITY IN SPACE, 2008, 349 : 457 - +
  • [4] Potential capabilities of Lunar Laser Ranging for geodesy and relativity
    Mueller, Juergen
    Williams, James G.
    Turyshev, Slava G.
    DYNAMIC PLANET: MONITORING AND UNDERSTANDING A DYNAMIC PLANET WITH GEODETIC AND OCEANOGRAPHIC TOOLS, 2007, 130 : 903 - +
  • [5] Relativity parameters determined from lunar laser ranging
    Williams, JG
    Newhall, XX
    Dickey, JO
    PHYSICAL REVIEW D, 1996, 53 (12): : 6730 - 6739
  • [6] Relativity parameters determined from lunar laser ranging
    Williams, J. G.
    Newhall, X. X.
    Dickey, J. O.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 53 (12):
  • [7] TESTING GENERAL RELATIVITY WITH LASER RANGING TO MOON
    BAIERLEIN, R
    PHYSICAL REVIEW, 1967, 162 (05): : 1275 - +
  • [8] Lunar laser ranging science: Gravitational physics and lunar interior and geodesy
    Williams, JG
    Turyshev, SG
    Boggs, DH
    Ratcliff, JT
    MOON AND NEAR-EARTH OBJECTS, 2006, 37 (01): : 67 - 71
  • [9] Advantages of combining Lunar Laser Ranging and Differential Lunar Laser Ranging
    Zhang, Mingyue
    Mueller, Juergen
    Biskupek, Liliane
    ASTRONOMY & ASTROPHYSICS, 2023, 681
  • [10] Apollo: A new push in lunar laser ranging
    Murphy, T. W., Jr.
    Michelson, E. L.
    Orin, A. E.
    Adelberger, E. G.
    Hoyle, C. D.
    Swanson, H. E.
    Stubbs, C. W.
    Battat, J. B.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2007, 16 (12A): : 2127 - 2135