We study the behavior of square-central elements and Artin–Schreier elements in division algebras of exponent 2 and degree a power of 2. We provide chain lemmas for such elements in division algebras over 2-fields F of cohomological 2-dimension cd2(F)≤2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm cd}_2(F) \leq 2}$$\end{document} and deduce a common slot lemma for tensor products of quaternion algebras over such fields. We also extend to characteristic 2 a theorem proven by Merkurjev for characteristic not 2 on the decomposition of any central simple algebra of exponent 2 and degree a power of 2 over a field F with cd2(F)≤2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm cd}_2(F) \leq 2}$$\end{document} as a tensor product of quaternion algebras.
机构:
Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
Sobolev Inst Math, Novosibirsk 630090, RussiaUniv Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
Shestakov, Ivan
Sverchkov, Sergei
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State Univ, Novosibirsk 630090, RussiaUniv Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil