Finite Dimensional Hopf Actions on Central Division Algebras

被引:4
|
作者
Cuadra, Juan [1 ]
Etingof, Pavel [2 ]
机构
[1] Univ Almeria, Dept Math, E-04120 Almeria, Spain
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/imrn/rnw030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field of characteristic zero. Let D be a division algebra of degree d over its center Z(D). Assume that k. Z(D). We show that a finite group G faithfully grades D if and only if G contains a normal abelian subgroup of index dividing d. We also prove that if a finite dimensional Hopf algebra coacts on D defining a Hopf-Galois extension, then its PI degree is at most d(2). Finally, we construct Hopf-Galois actions on division algebras of twisted group algebras attached to bijective cocycles.
引用
收藏
页码:1562 / 1577
页数:16
相关论文
共 50 条