Square-central and Artin–Schreier elements in division algebras

被引:0
|
作者
Demba Barry
Adam Chapman
机构
[1] Université de Bamako,Département de Mathématique et Informatique
[2] Michigan State University,Department of Mathematics
来源
Archiv der Mathematik | 2015年 / 104卷
关键词
Primary 16K20; Secondary 11E04; 11R52; Quaternion algebras; Quadratic forms; Common slot lemma;
D O I
暂无
中图分类号
学科分类号
摘要
We study the behavior of square-central elements and Artin–Schreier elements in division algebras of exponent 2 and degree a power of 2. We provide chain lemmas for such elements in division algebras over 2-fields F of cohomological 2-dimension cd2(F)≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm cd}_2(F) \leq 2}$$\end{document} and deduce a common slot lemma for tensor products of quaternion algebras over such fields. We also extend to characteristic 2 a theorem proven by Merkurjev for characteristic not 2 on the decomposition of any central simple algebra of exponent 2 and degree a power of 2 over a field F with cd2(F)≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm cd}_2(F) \leq 2}$$\end{document} as a tensor product of quaternion algebras.
引用
收藏
页码:513 / 521
页数:8
相关论文
共 50 条
  • [31] Cyclic Division Algebras with Non-norm Elements
    Li, Chengju
    Yue, Qin
    Bae, Sunghan
    ALGEBRA COLLOQUIUM, 2014, 21 (02) : 275 - 283
  • [32] Square roots of strongly positive elements in lmc algebras
    Chryssakis, Thanassis
    Topological Algebras and Applications, 2007, 427 : 139 - 142
  • [33] SQUARE ZERO ELEMENTS IN GRADED LIE-ALGEBRAS
    BALAVOINE, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (06): : 689 - 694
  • [34] COMMUTATORS AND SQUARE-ZERO ELEMENTS IN BANACH ALGEBRAS
    Alaminos, J.
    Extremera, J.
    Villena, A. R.
    Bresar, M.
    Spenko, S.
    QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (01): : 1 - 13
  • [35] Primitive, almost primitive, test, and Δ-primitive elements of free algebras with the Nielsen-Schreier property
    Mikhalev, AA
    Yu, JT
    JOURNAL OF ALGEBRA, 2000, 228 (02) : 603 - 623
  • [36] On central elements in the universal enveloping algebras of the orthogonal Lie algebras
    Itoh, M
    Umeda, T
    COMPOSITIO MATHEMATICA, 2001, 127 (03) : 333 - 359
  • [37] Identities and central polynomials for real graded division algebras
    Diniz, Diogo
    Fidelis, Claudemir
    Mota, Sergio
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2017, 27 (07) : 935 - 952
  • [38] Projective bases of division algebras and groups of central type
    Aljadeff, E
    Haile, D
    Natapov, M
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 146 (1) : 317 - 335
  • [39] Projective bases of division algebras and groups of central type
    Eli Aljadeff
    Darrell Haile
    Michael Natapov
    Israel Journal of Mathematics, 2005, 146 : 317 - 335
  • [40] A QUESTION ON THE DISCRIMINANTS OF INVOLUTIONS OF CENTRAL DIVISION-ALGEBRAS
    PARIMALA, R
    SRIDHARAN, R
    SURESH, V
    MATHEMATISCHE ANNALEN, 1993, 297 (04) : 575 - 580