COMMUTATORS AND SQUARE-ZERO ELEMENTS IN BANACH ALGEBRAS

被引:13
|
作者
Alaminos, J. [1 ]
Extremera, J. [1 ]
Villena, A. R. [1 ]
Bresar, M. [2 ,3 ]
Spenko, S. [4 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, Granada, Spain
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2016年 / 67卷 / 01期
关键词
NILPOTENT ELEMENTS; SUMS; MAPS; SPACES;
D O I
10.1093/qmath/hav037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our initial result states that, in a certain class of Banach algebras which includes -algebras and group algebras of locally compact groups, every commutator lies in the closed linear span of square-zero elements. The proof relies on the theory of Banach algebras with property . We then study several variations and extensions of this result. For instance, we show that in a von Neumann algebra every commutator is actually a finite sum of square-zero elements. We also consider the commutator ideal and the existence of some special square-zero elements.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] C* -algebras hereditarily containing nonzero, square-zero elements
    Amini, Massoud
    Elliott, George A.
    Rouzbehani, Mohammad
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (04): : 1081 - 1091
  • [2] On commutators of square-zero Hilbert space operators
    Marcoux, Laurent W.
    Radjavi, Heydar
    Zhang, Yuanhang
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025,
  • [3] Square-zero determined matrix algebras
    Ma, Xiaobin
    Ding, Genhong
    Wang, Long
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (11): : 1311 - 1317
  • [4] The Square-Zero Basis of Matrix Lie Algebras
    Duran Diaz, Raul
    Gayoso Martinez, Victor
    Hernandez Encinas, Luis
    Munoz Masque, Jaime
    MATHEMATICS, 2020, 8 (06)
  • [5] MAPS DETERMINED BY ACTION ON SQUARE-ZERO ELEMENTS
    Wang, Dengyin
    Yu, Xiaoxiang
    Chen, Zhengxin
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (11) : 4255 - 4262
  • [6] Nonlinear Jordan Derivable Mappings of Generalized Matrix Algebras by Lie Product Square-Zero Elements
    Fei, Xiuhai
    Zhang, Haifang
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [7] Linear maps characterized by the action on square-zero elements
    Chen, Hung-Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 450 : 243 - 249
  • [8] Square-zero derivations of matrix algebras over commutative rings
    Zhou, Jinming
    Wang, Dengyin
    Zhang, Qinghua
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (02): : 239 - 243
  • [9] Commutators in Banach *-algebras
    Yood, Bertram
    STUDIA MATHEMATICA, 2008, 186 (01) : 1 - 10
  • [10] Square-zero factorization of matrices
    Botha, J. D.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 488 : 71 - 85