Microscopic relaxation channels in materials for superconducting qubits

被引:0
|
作者
Anjali Premkumar
Conan Weiland
Sooyeon Hwang
Berthold Jäck
Alexander P. M. Place
Iradwikanari Waluyo
Adrian Hunt
Valentina Bisogni
Jonathan Pelliciari
Andi Barbour
Mike S. Miller
Paola Russo
Fernando Camino
Kim Kisslinger
Xiao Tong
Mark S. Hybertsen
Andrew A. Houck
Ignace Jarrige
机构
[1] Princeton University,Department of Electrical Engineering
[2] National Institute of Standards and Technology,Material Measurement Laboratory
[3] Brookhaven National Laboratory,Center for Functional Nanomaterials
[4] Princeton University,Department of Physics
[5] Brookhaven National Laboratory,National Synchrotron Light Source II
[6] Angstrom Engineering Inc.,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we combine measurements of transmon qubit relaxation times (T1) with spectroscopy and microscopy of the polycrystalline niobium films used in qubit fabrication. By comparing films deposited using three different techniques, we reveal correlations between T1 and intrinsic film properties such as grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Qubit and resonator measurements show signatures of two-level system defects, which we propose to be hosted in the grain boundaries and surface oxides. We also show that the residual resistance ratio of the polycrystalline niobium films can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.
引用
收藏
相关论文
共 50 条
  • [41] Tunable coupling of superconducting qubits
    Blais, A
    van den Brink, AM
    Zagoskin, AM
    PHYSICAL REVIEW LETTERS, 2003, 90 (12)
  • [42] Superconducting qubits II: Decoherence
    Wilhelm, F. K.
    Storcz, M. J.
    Hartmann, U.
    Geller, Michael R.
    MANIPULATING QUANTUM COHERENCE IN SOLID STATE SYSTEMS, 2007, 244 : 195 - +
  • [43] Relativistic motion with superconducting qubits
    Felicetti, S.
    Sabin, C.
    Fuentes, I.
    Lamata, L.
    Romero, G.
    Solano, E.
    PHYSICAL REVIEW B, 2015, 92 (06):
  • [44] Ruthenates: simple superconducting qubits
    Gulian, AM
    Wood, KS
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 408 : 923 - 925
  • [45] Decoherence benchmarking of superconducting qubits
    Burnett, Jonathan J.
    Bengtsson, Andreas
    Scigliuzzo, Marco
    Niepce, David
    Kudra, Marina
    Delsing, Per
    Bylander, Jonas
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [46] Quantum acoustics with superconducting qubits
    Chu, Yiwen
    Kharel, Prashanta
    Renninger, William H.
    Burkhart, Luke D.
    Frunzio, Luigi
    Rakich, Peter T.
    Schoelkopf, Robert J.
    SCIENCE, 2017, 358 (6360) : 199 - 202
  • [47] Driving superconducting qubits into chaos
    Chavez-Carlos, Jorge
    Reynoso, Miguel A. Prado
    Cortinas, Rodrigo G.
    Garcia-Mata, Ignacio
    Batista, Victor S.
    Perez-Bernal, Francisco
    Wisniacki, Diego A.
    Santos, Lea F.
    QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (01):
  • [48] Progress of coupled superconducting qubits
    Zhao Na
    Liu Jian-She
    Li Tie-Fu
    Chen Wei
    ACTA PHYSICA SINICA, 2013, 62 (01)
  • [49] Microwave Packaging for Superconducting Qubits
    Lienhard, Benjamin
    Braumuller, Jochen
    Woods, Wayne
    Rosenberg, Danna
    Calusine, Greg
    Weber, Steven
    Vepsalainen, Antti
    O'Brien, Kevin
    Orlando, Terry P.
    Gustavsson, Simon
    Oliver, William D.
    2019 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2019, : 275 - 278
  • [50] Superconducting qubits: poised for computing?
    Siddiqi, I.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2011, 24 (09):